You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/zero/gemini/gemini_hook.py

110 lines
4.0 KiB

from contextlib import contextmanager
from enum import Enum
from functools import partial
from typing import Dict, List, Iterable, Tuple
import torch
import torch.distributed as dist
from colossalai.logging import DistributedLogger
from colossalai.tensor.param_op_hook import ColoParamOpHook
from colossalai.utils import is_ddp_ignored
from colossalai.zero.gemini import TensorState
from colossalai.zero.gemini.gemini_mgr import GeminiManager
6 months ago
from .chunk import Chunk
class TrainingPhase(Enum):
FORWARD = 0
BACKWARD = 1
6 months ago
logger = DistributedLogger("gemini_hook")
import os
rank = int(os.environ['RANK'])
class GeminiZeROHook(ColoParamOpHook):
def __init__(self, gemini_manager: GeminiManager) -> None:
super().__init__()
self._gemini_manager = gemini_manager
self._chunk_manager = gemini_manager.chunk_manager
self._training_phase = TrainingPhase.FORWARD
def pre_op(self, params):
# map params to chunks
params = [p for p in params if not is_ddp_ignored(p)]
all_chunks = self._chunk_manager.get_chunks(params)
# wait for prefetched chunks, filter those are not prefetched
unique_chunks = set(all_chunks)
chunks_fetch_sync = self._gemini_manager.wait_chunks(all_chunks)
# transfer state
for p in params:
self._chunk_manager.trans_tensor_state(p, TensorState.COMPUTE)
self._gemini_manager.sample_overall_data()
# evit chunks, aware of async fetched
self._gemini_manager.adjust_layout(all_chunks, record_anyway=self._gemini_manager.placement_policy.max_prefetch > 0)
# fetch the rest synchronously
for chunk in chunks_fetch_sync:
self._chunk_manager.access_chunk(chunk)
# get possible chunks to prefetch
chunks_fetch_async = self._gemini_manager.placement_policy.get_prefetch_chunks()
if rank == 0 and not self._gemini_manager.is_warmup():
print(f"compute_id: {self._gemini_manager.compute_idx} self._gemini_manager.compute_list: {self._gemini_manager.compute_list}")
print(f"{all_chunks=}")
print(f"accessed_chunks={self._chunk_manager.accessed_chunks}")
print(f"{chunks_fetch_sync=}")
print(f"{chunks_fetch_async=}")
print(f"works={list(self._gemini_manager._async_works.keys())}")
# prefetch
for chunk in chunks_fetch_async:
6 months ago
maybe_work = self._chunk_manager.access_chunk(chunk, async_access=True)
if maybe_work is not None:
self._gemini_manager.add_work(chunk, maybe_work)
if rank == 0 and not self._gemini_manager.is_warmup():
print(f"post accessed_chunks={self._chunk_manager.accessed_chunks}")
# record cuda model data of the current OP, including memory for prefetched chunks
self._gemini_manager.record_model_data_volume()
def post_op(self, params):
params = [p for p in params if not is_ddp_ignored(p)]
for p in params:
tensor_state = (
TensorState.HOLD
if self._training_phase == TrainingPhase.FORWARD or not p.requires_grad
else TensorState.HOLD_AFTER_BWD
)
self._chunk_manager.trans_tensor_state(p, tensor_state)
def pre_forward(self, params: List[torch.Tensor]) -> None:
self.pre_op(params)
def post_forward(self, params: List[torch.Tensor]) -> None:
self.post_op(params)
def pre_backward(self, params: List[torch.Tensor]) -> None:
self.pre_op(params)
def post_backward(self, params: List[torch.Tensor]) -> None:
self.post_op(params)
@contextmanager
def switch_training_phase(self, training_phase: TrainingPhase = TrainingPhase.BACKWARD):
old_training_phase = self._training_phase
try:
self._training_phase = training_phase
yield
finally:
self._training_phase = old_training_phase
switch_to_backward = switch_training_phase
switch_to_forward = partial(switch_to_backward, training_phase=TrainingPhase.FORWARD)