|
|
|
@ -13,15 +13,16 @@ from colossalai.zero.gemini.chunk import Chunk
|
|
|
|
|
from .chunk import Chunk, ChunkManager |
|
|
|
|
from .memory_tracer import ChunkMemStatsCollector |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class PlacementPolicy(ABC): |
|
|
|
|
need_mem_stats: bool = False |
|
|
|
|
|
|
|
|
|
def __init__( |
|
|
|
|
self, chunk_manager: ChunkManager, mem_stats_collector: Optional[ChunkMemStatsCollector] = None, **kwargs |
|
|
|
|
self, gemini_manager: 'GeminiManager', chunk_manager: ChunkManager, mem_stats_collector: Optional[ChunkMemStatsCollector] = None, max_prefetch:int = 0, **kwargs |
|
|
|
|
) -> None: |
|
|
|
|
self.gemini_manager = gemini_manager |
|
|
|
|
self.chunk_manager = chunk_manager |
|
|
|
|
self.mem_stats_collector: Optional[ChunkMemStatsCollector] = mem_stats_collector |
|
|
|
|
self.max_prefetch = max_prefetch |
|
|
|
|
|
|
|
|
|
@abstractmethod |
|
|
|
|
def evict_tensors(self, can_evict_chunks: List[Chunk], **kwargs) -> Tuple[int, float]: |
|
|
|
@ -34,21 +35,25 @@ class PlacementPolicy(ABC):
|
|
|
|
|
raise NotImplementedError |
|
|
|
|
|
|
|
|
|
@abstractmethod |
|
|
|
|
def get_prefetch_chunks(self, max_prefetch: int) -> List[Chunk]: |
|
|
|
|
def get_prefetch_chunks(self) -> List[Chunk]: |
|
|
|
|
raise NotImplementedError |
|
|
|
|
|
|
|
|
|
import os |
|
|
|
|
rank = int(os.environ["RANK"]) |
|
|
|
|
|
|
|
|
|
class StaticPlacementPolicy(PlacementPolicy): |
|
|
|
|
def __init__( |
|
|
|
|
self, |
|
|
|
|
gemini_manager: 'GeminiManager', |
|
|
|
|
chunk_manager: ChunkManager, |
|
|
|
|
mem_stats_collector: Optional[ChunkMemStatsCollector] = None, |
|
|
|
|
max_prefetch: int = 0, |
|
|
|
|
shard_param_frac: float = 1.0, |
|
|
|
|
offload_optim_frac: float = 0.0, |
|
|
|
|
offload_param_frac: float = 0.0, |
|
|
|
|
**kwargs, |
|
|
|
|
) -> None: |
|
|
|
|
super().__init__(chunk_manager, mem_stats_collector=mem_stats_collector) |
|
|
|
|
super().__init__(gemini_manager, chunk_manager, mem_stats_collector=mem_stats_collector, max_prefetch=max_prefetch) |
|
|
|
|
if offload_param_frac > 0.0 and (shard_param_frac != 1.0 or offload_optim_frac != 1.0): |
|
|
|
|
warnings.warn("offload_param_frac is ignored when shard_param_frac != 1.0 or offload_optim_frac != 1.0") |
|
|
|
|
offload_param_frac = 0.0 |
|
|
|
@ -99,15 +104,17 @@ class StaticPlacementPolicy(PlacementPolicy):
|
|
|
|
|
self.keep_gathered_chunk_mem = total_chunk_mem * (1 - self.shard_param_frac) |
|
|
|
|
self.keep_cuda_chunk_mem = total_chunk_mem * (1 - self.offload_param_frac) |
|
|
|
|
|
|
|
|
|
def get_prefetch_chunks(self, max_prefetch: int) -> List[Chunk]: |
|
|
|
|
def get_prefetch_chunks(self) -> List[Chunk]: |
|
|
|
|
if self.gemini_manager.is_warmup(): # no prefetch during warmup since we need compute_list |
|
|
|
|
return [] |
|
|
|
|
prefetch = [] |
|
|
|
|
for i in range(self.chunk_manager.compute_idx + 1, len(self.chunk_manager.compute_list)): |
|
|
|
|
for chunk in self.chunk_manager.compute_list[i]: |
|
|
|
|
if len(prefetch) >= max_prefetch: |
|
|
|
|
for i in range(self.gemini_manager.compute_idx + 1, len(self.gemini_manager.compute_list)): |
|
|
|
|
for chunk in self.gemini_manager.compute_list[i]: |
|
|
|
|
if len(prefetch) >= self.max_prefetch: |
|
|
|
|
break |
|
|
|
|
if chunk not in prefetch: |
|
|
|
|
if chunk not in prefetch and chunk not in self.chunk_manager.accessed_chunks: |
|
|
|
|
prefetch.append(chunk) |
|
|
|
|
if len(prefetch) >= max_prefetch: |
|
|
|
|
if len(prefetch) >= self.max_prefetch: |
|
|
|
|
break |
|
|
|
|
return prefetch |
|
|
|
|
|
|
|
|
@ -117,13 +124,15 @@ class AutoPlacementPolicy(PlacementPolicy):
|
|
|
|
|
|
|
|
|
|
def __init__( |
|
|
|
|
self, |
|
|
|
|
gemini_manager: 'GeminiManager', |
|
|
|
|
chunk_manager: ChunkManager, |
|
|
|
|
mem_stats_collector: Optional[ChunkMemStatsCollector] = None, |
|
|
|
|
max_prefetch: int = 0, |
|
|
|
|
warmup_non_model_data_ratio: float = 0.8, |
|
|
|
|
steady_cuda_cap_ratio: float = 0.9, |
|
|
|
|
**kwargs, |
|
|
|
|
) -> None: |
|
|
|
|
super().__init__(chunk_manager, mem_stats_collector=mem_stats_collector) |
|
|
|
|
super().__init__(gemini_manager, chunk_manager, mem_stats_collector=mem_stats_collector, max_prefetch=max_prefetch) |
|
|
|
|
# model data will use 1-_warmup_non_model_data_ratio CUDA memory in warmup phase |
|
|
|
|
# you can set them by AutoPlacementPolicy.set_warmup_non_model_data_ratio() |
|
|
|
|
# and AutoPlacementPolicy.set_steady_cuda_cap_ratio() |
|
|
|
|