|
|
|
from contextlib import contextmanager
|
|
|
|
from enum import Enum
|
|
|
|
from functools import partial
|
|
|
|
from typing import Dict, List
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.distributed as dist
|
|
|
|
|
|
|
|
from colossalai.tensor.colo_parameter import ColoParameter
|
|
|
|
from colossalai.tensor.param_op_hook import ColoParamOpHook
|
|
|
|
from colossalai.utils import is_ddp_ignored
|
|
|
|
from colossalai.zero.gemini import TensorState
|
|
|
|
from colossalai.zero.gemini.gemini_mgr import GeminiManager
|
|
|
|
from colossalai.zero.gemini.memory_tracer.param_runtime_order import OrderedParamGenerator
|
|
|
|
from colossalai.logging import DistributedLogger
|
|
|
|
|
|
|
|
from .chunk import Chunk
|
|
|
|
|
|
|
|
class TrainingPhase(Enum):
|
|
|
|
FORWARD = 0
|
|
|
|
BACKWARD = 1
|
|
|
|
|
|
|
|
|
|
|
|
logger = DistributedLogger("gemini_hook")
|
|
|
|
|
|
|
|
class GeminiZeROHook(ColoParamOpHook):
|
|
|
|
def __init__(
|
|
|
|
self, gemini_manager: GeminiManager, param_order: OrderedParamGenerator, max_prefetch: int = 0
|
|
|
|
) -> None:
|
|
|
|
super().__init__()
|
|
|
|
self._gemini_manager = gemini_manager
|
|
|
|
self._chunk_manager = gemini_manager.chunk_manager
|
|
|
|
self._training_phase = TrainingPhase.FORWARD
|
|
|
|
# param_visited_order might be updated somewhere else
|
|
|
|
self._param_visited_order = param_order.param_visited_order
|
|
|
|
self._max_prefetch = max_prefetch
|
|
|
|
self._async_works: Dict[Chunk, dist.work] = {}
|
|
|
|
# used by get_prefetch_chunks to track current param
|
|
|
|
self._cur_param_idx = 0
|
|
|
|
|
|
|
|
def get_prefetch_chunks(self, all_params: List[ColoParameter], cur_chunks: List[Chunk]) -> List[Chunk]:
|
|
|
|
chunks_to_prefetch = set()
|
|
|
|
if self._training_phase == TrainingPhase.FORWARD: # forward phrase: increase
|
|
|
|
self._cur_param_idx += len(all_params) # need to update first
|
|
|
|
idx = self._cur_param_idx + 1
|
|
|
|
# still have params and prefetched chunks don't exceed the limit
|
|
|
|
while idx < len(self._param_visited_order) and len(chunks_to_prefetch) + 1 < self._max_prefetch:
|
|
|
|
param = self._param_visited_order[idx]
|
|
|
|
if is_ddp_ignored(param):
|
|
|
|
idx += 1
|
|
|
|
continue
|
|
|
|
chunk = self._chunk_manager.get_chunk(param)
|
|
|
|
if chunk not in cur_chunks:
|
|
|
|
chunks_to_prefetch.add(chunk)
|
|
|
|
idx += 1
|
|
|
|
else:
|
|
|
|
self._cur_param_idx -= len(all_params)
|
|
|
|
idx = self._cur_param_idx - 1
|
|
|
|
chunks_to_prefetch = set()
|
|
|
|
while idx >= 0 and len(chunks_to_prefetch) + 1 < self._max_prefetch:
|
|
|
|
param = self._param_visited_order[idx]
|
|
|
|
if is_ddp_ignored(param):
|
|
|
|
idx -= 1
|
|
|
|
continue
|
|
|
|
chunk = self._chunk_manager.get_chunk(self._param_visited_order[idx])
|
|
|
|
if chunk not in cur_chunks:
|
|
|
|
chunks_to_prefetch.add(chunk)
|
|
|
|
idx -= 1
|
|
|
|
print(f"cur id {self._cur_param_idx}")
|
|
|
|
return list(chunks_to_prefetch)
|
|
|
|
|
|
|
|
def wait_chunks(self, chunks: List[Chunk]) -> List[Chunk]:
|
|
|
|
non_prefetched_chunks = []
|
|
|
|
for chunk in chunks:
|
|
|
|
if chunk in self._async_works:
|
|
|
|
print(f"prefetched {chunk.count_id}")
|
|
|
|
self._async_works[chunk].wait()
|
|
|
|
del self._async_works[chunk]
|
|
|
|
else:
|
|
|
|
non_prefetched_chunks.append(chunk)
|
|
|
|
return non_prefetched_chunks
|
|
|
|
|
|
|
|
def pre_op(self, all_params):
|
|
|
|
# def find_idx(param):
|
|
|
|
# for i, p in enumerate(self._param_visited_order):
|
|
|
|
# if param is p:
|
|
|
|
# return i
|
|
|
|
# assert False
|
|
|
|
|
|
|
|
# idxs = [find_idx(p) for p in all_params]
|
|
|
|
# max_id = min(idxs)
|
|
|
|
# idxs = [i - max_id for i in idxs]
|
|
|
|
# assert list(range(len(idxs))) == sorted(idxs), f'{idxs}'
|
|
|
|
|
|
|
|
# deal with current needed chunks
|
|
|
|
params = [p for p in all_params if not is_ddp_ignored(p)]
|
|
|
|
all_chunks = self._chunk_manager.get_chunks(params)
|
|
|
|
chunks_need_to_fetch_sync = tuple(self.wait_chunks(all_chunks))
|
|
|
|
for p in params:
|
|
|
|
self._chunk_manager.trans_tensor_state(p, TensorState.COMPUTE)
|
|
|
|
self._gemini_manager.sample_overall_data()
|
|
|
|
self._gemini_manager.adjust_layout(chunks_need_to_fetch_sync)
|
|
|
|
|
|
|
|
# deal with chunks that are to be async fetched
|
|
|
|
chunks_can_be_fetch_async = self.get_prefetch_chunks(all_params=all_params, cur_chunks=chunks_need_to_fetch_sync)
|
|
|
|
|
|
|
|
print(f"cur_chunks {' '.join([str(x.count_id) for x in chunks_need_to_fetch_sync])}, prefetch {' '.join([str(x.count_id) for x in chunks_can_be_fetch_async])}")
|
|
|
|
# deal with chunks that are to be fetched now
|
|
|
|
for chunk in chunks_need_to_fetch_sync:
|
|
|
|
self._chunk_manager.access_chunk(chunk)
|
|
|
|
|
|
|
|
# deal with chunks that are to be pre fetched TODO @botbw: the order here matters?
|
|
|
|
for chunk in chunks_can_be_fetch_async:
|
|
|
|
if chunk in self._async_works:
|
|
|
|
continue
|
|
|
|
maybe_work = self._chunk_manager.access_chunk(chunk, async_access=True)
|
|
|
|
if maybe_work is not None:
|
|
|
|
print(f"prefetch {chunk.count_id}")
|
|
|
|
self._async_works[chunk] = maybe_work
|
|
|
|
|
|
|
|
# record cuda model data of the current OP
|
|
|
|
self._gemini_manager.record_model_data_volume()
|
|
|
|
|
|
|
|
def post_op(self, params):
|
|
|
|
params = [p for p in params if not is_ddp_ignored(p)]
|
|
|
|
for p in params:
|
|
|
|
tensor_state = (
|
|
|
|
TensorState.HOLD
|
|
|
|
if self._training_phase == TrainingPhase.FORWARD or not p.requires_grad
|
|
|
|
else TensorState.HOLD_AFTER_BWD
|
|
|
|
)
|
|
|
|
self._chunk_manager.trans_tensor_state(p, tensor_state)
|
|
|
|
|
|
|
|
def pre_forward(self, params: List[torch.Tensor]) -> None:
|
|
|
|
self.pre_op(params)
|
|
|
|
|
|
|
|
def post_forward(self, params: List[torch.Tensor]) -> None:
|
|
|
|
self.post_op(params)
|
|
|
|
|
|
|
|
def pre_backward(self, params: List[torch.Tensor]) -> None:
|
|
|
|
self.pre_op(params)
|
|
|
|
|
|
|
|
def post_backward(self, params: List[torch.Tensor]) -> None:
|
|
|
|
self.post_op(params)
|
|
|
|
|
|
|
|
@contextmanager
|
|
|
|
def switch_training_phase(self, training_phase: TrainingPhase = TrainingPhase.BACKWARD):
|
|
|
|
if training_phase == TrainingPhase.FORWARD:
|
|
|
|
self._cur_param_idx = 0
|
|
|
|
else:
|
|
|
|
self._cur_param_idx = len(self._param_visited_order) - 1
|
|
|
|
|
|
|
|
old_training_phase = self._training_phase
|
|
|
|
try:
|
|
|
|
self._training_phase = training_phase
|
|
|
|
yield
|
|
|
|
finally:
|
|
|
|
self._training_phase = old_training_phase
|
|
|
|
|
|
|
|
switch_to_backward = switch_training_phase
|
|
|
|
switch_to_forward = partial(switch_to_backward, training_phase=TrainingPhase.FORWARD)
|