|
|
|
"""
|
|
|
|
Script for English retrieval based conversation system backed by LLaMa2
|
|
|
|
"""
|
|
|
|
|
|
|
|
import argparse
|
|
|
|
import json
|
|
|
|
import os
|
|
|
|
|
|
|
|
from colossalqa.chain.retrieval_qa.base import RetrievalQA
|
|
|
|
from colossalqa.data_loader.document_loader import DocumentLoader
|
|
|
|
from colossalqa.local.llm import ColossalAPI, ColossalLLM
|
|
|
|
from colossalqa.memory import ConversationBufferWithSummary
|
|
|
|
from colossalqa.prompt.prompt import (
|
|
|
|
EN_RETRIEVAL_QA_REJECTION_ANSWER,
|
|
|
|
EN_RETRIEVAL_QA_TRIGGER_KEYWORDS,
|
|
|
|
PROMPT_DISAMBIGUATE_EN,
|
|
|
|
PROMPT_RETRIEVAL_QA_EN,
|
|
|
|
)
|
|
|
|
from colossalqa.retriever import CustomRetriever
|
|
|
|
from langchain import LLMChain
|
|
|
|
from langchain.embeddings import HuggingFaceEmbeddings
|
|
|
|
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
# Parse arguments
|
|
|
|
parser = argparse.ArgumentParser(description="English retrieval based conversation system backed by LLaMa2")
|
|
|
|
parser.add_argument("--model_path", type=str, default=None, help="path to the model")
|
|
|
|
parser.add_argument("--model_name", type=str, default=None, help="name of the model")
|
|
|
|
parser.add_argument(
|
|
|
|
"--sql_file_path", type=str, default=None, help="path to the a empty folder for storing sql files for indexing"
|
|
|
|
)
|
|
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
if not os.path.exists(args.sql_file_path):
|
|
|
|
os.makedirs(args.sql_file_path)
|
|
|
|
|
|
|
|
colossal_api = ColossalAPI.get_api(args.model_name, args.model_path)
|
|
|
|
llm = ColossalLLM(n=1, api=colossal_api)
|
|
|
|
|
|
|
|
# Define the retriever
|
|
|
|
information_retriever = CustomRetriever(k=3, sql_file_path=args.sql_file_path, verbose=True)
|
|
|
|
|
|
|
|
# Setup embedding model locally
|
|
|
|
embedding = HuggingFaceEmbeddings(
|
|
|
|
model_name="moka-ai/m3e-base", model_kwargs={"device": "cpu"}, encode_kwargs={"normalize_embeddings": False}
|
|
|
|
)
|
|
|
|
|
|
|
|
# Define memory with summarization ability
|
|
|
|
memory = ConversationBufferWithSummary(
|
|
|
|
llm=llm, max_tokens=2000, llm_kwargs={"max_new_tokens": 50, "temperature": 0.6, "do_sample": True}
|
|
|
|
)
|
|
|
|
|
|
|
|
# Define the chain to preprocess the input
|
|
|
|
# Disambiguate the input. e.g. "What is the capital of that country?" -> "What is the capital of France?"
|
|
|
|
llm_chain_disambiguate = LLMChain(
|
|
|
|
llm=llm, prompt=PROMPT_DISAMBIGUATE_EN, llm_kwargs={"max_new_tokens": 30, "temperature": 0.6, "do_sample": True}
|
|
|
|
)
|
|
|
|
|
|
|
|
def disambiguity(input):
|
|
|
|
out = llm_chain_disambiguate.run(input=input, chat_history=memory.buffer, stop=["\n"])
|
|
|
|
return out.split("\n")[0]
|
|
|
|
|
|
|
|
# Load data to vector store
|
|
|
|
print("Select files for constructing retriever")
|
|
|
|
documents = []
|
|
|
|
|
|
|
|
# preprocess data
|
|
|
|
if not os.path.exists("../data/data_sample/custom_service_preprocessed.json"):
|
|
|
|
if not os.path.exists("../data/data_sample/custom_service.json"):
|
|
|
|
raise ValueError(
|
|
|
|
"custom_service.json not found, please download the data from HuggingFace Datasets: qgyd2021/e_commerce_customer_service"
|
|
|
|
)
|
|
|
|
data = json.load(open("../data/data_sample/custom_service.json", "r", encoding="utf8"))
|
|
|
|
preprocessed = []
|
|
|
|
for row in data["rows"]:
|
|
|
|
preprocessed.append({"key": row["row"]["query"], "value": row["row"]["response"]})
|
|
|
|
data = {}
|
|
|
|
data["data"] = preprocessed
|
|
|
|
with open("../data/data_sample/custom_service_preprocessed.json", "w", encoding="utf8") as f:
|
|
|
|
json.dump(data, f, ensure_ascii=False)
|
|
|
|
|
|
|
|
# define metadata function which is used to format the prompt with value in metadata instead of key,
|
|
|
|
# the later is langchain's default behavior
|
|
|
|
def metadata_func(data_sample, additional_fields):
|
|
|
|
"""
|
|
|
|
metadata_func (Callable[Dict, Dict]): A function that takes in the JSON
|
|
|
|
object extracted by the jq_schema and the default metadata and returns
|
|
|
|
a dict of the updated metadata.
|
|
|
|
|
|
|
|
To use key-value format, the metadata_func should be defined as follows:
|
|
|
|
metadata = {'value': 'a string to be used to format the prompt', 'is_key_value_mapping': True}
|
|
|
|
"""
|
|
|
|
metadata = {}
|
|
|
|
metadata["value"] = f"Question: {data_sample['key']}\nAnswer:{data_sample['value']}"
|
|
|
|
metadata["is_key_value_mapping"] = True
|
|
|
|
assert "value" not in additional_fields
|
|
|
|
assert "is_key_value_mapping" not in additional_fields
|
|
|
|
metadata.update(additional_fields)
|
|
|
|
return metadata
|
|
|
|
|
|
|
|
retriever_data = DocumentLoader(
|
|
|
|
[["../data/data_sample/custom_service_preprocessed.json", "CustomerServiceDemo"]],
|
|
|
|
content_key="key",
|
|
|
|
metadata_func=metadata_func,
|
|
|
|
).all_data
|
|
|
|
|
|
|
|
# Split
|
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=20)
|
|
|
|
splits = text_splitter.split_documents(retriever_data)
|
|
|
|
documents.extend(splits)
|
|
|
|
|
|
|
|
# Create retriever
|
|
|
|
information_retriever.add_documents(docs=documents, cleanup="incremental", mode="by_source", embedding=embedding)
|
|
|
|
|
|
|
|
# Set document retrieval chain, we need this chain to calculate prompt length
|
|
|
|
memory.initiate_document_retrieval_chain(
|
|
|
|
llm,
|
|
|
|
PROMPT_RETRIEVAL_QA_EN,
|
|
|
|
information_retriever,
|
|
|
|
chain_type_kwargs={
|
|
|
|
"chat_history": "",
|
|
|
|
},
|
|
|
|
)
|
|
|
|
|
|
|
|
# Define retrieval chain
|
|
|
|
retrieval_chain = RetrievalQA.from_chain_type(
|
|
|
|
llm=llm,
|
|
|
|
verbose=False,
|
|
|
|
chain_type="stuff",
|
|
|
|
retriever=information_retriever,
|
|
|
|
chain_type_kwargs={"prompt": PROMPT_RETRIEVAL_QA_EN, "memory": memory},
|
|
|
|
llm_kwargs={"max_new_tokens": 50, "temperature": 0.75, "do_sample": True},
|
|
|
|
)
|
|
|
|
# Set disambiguity handler
|
|
|
|
information_retriever.set_rephrase_handler(disambiguity)
|
|
|
|
# Start conversation
|
|
|
|
while True:
|
|
|
|
user_input = input("User: ")
|
|
|
|
if "END" == user_input:
|
|
|
|
print("Agent: Happy to chat with you :)")
|
|
|
|
break
|
|
|
|
agent_response = retrieval_chain.run(
|
|
|
|
query=user_input,
|
|
|
|
stop=["Human: "],
|
|
|
|
rejection_trigger_keywords=EN_RETRIEVAL_QA_TRIGGER_KEYWORDS,
|
|
|
|
rejection_answer=EN_RETRIEVAL_QA_REJECTION_ANSWER,
|
|
|
|
)
|
|
|
|
agent_response = agent_response.split("\n")[0]
|
|
|
|
print(f"Agent: {agent_response}")
|