mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
150 lines
6.0 KiB
150 lines
6.0 KiB
""" |
|
Script for English retrieval based conversation system backed by LLaMa2 |
|
""" |
|
|
|
import argparse |
|
import json |
|
import os |
|
|
|
from colossalqa.chain.retrieval_qa.base import RetrievalQA |
|
from colossalqa.data_loader.document_loader import DocumentLoader |
|
from colossalqa.local.llm import ColossalAPI, ColossalLLM |
|
from colossalqa.memory import ConversationBufferWithSummary |
|
from colossalqa.prompt.prompt import ( |
|
EN_RETRIEVAL_QA_REJECTION_ANSWER, |
|
EN_RETRIEVAL_QA_TRIGGER_KEYWORDS, |
|
PROMPT_DISAMBIGUATE_EN, |
|
PROMPT_RETRIEVAL_QA_EN, |
|
) |
|
from colossalqa.retriever import CustomRetriever |
|
from langchain import LLMChain |
|
from langchain.embeddings import HuggingFaceEmbeddings |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
|
|
if __name__ == "__main__": |
|
# Parse arguments |
|
parser = argparse.ArgumentParser(description="English retrieval based conversation system backed by LLaMa2") |
|
parser.add_argument("--model_path", type=str, default=None, help="path to the model") |
|
parser.add_argument("--model_name", type=str, default=None, help="name of the model") |
|
parser.add_argument( |
|
"--sql_file_path", type=str, default=None, help="path to the a empty folder for storing sql files for indexing" |
|
) |
|
|
|
args = parser.parse_args() |
|
|
|
if not os.path.exists(args.sql_file_path): |
|
os.makedirs(args.sql_file_path) |
|
|
|
colossal_api = ColossalAPI.get_api(args.model_name, args.model_path) |
|
llm = ColossalLLM(n=1, api=colossal_api) |
|
|
|
# Define the retriever |
|
information_retriever = CustomRetriever(k=3, sql_file_path=args.sql_file_path, verbose=True) |
|
|
|
# Setup embedding model locally |
|
embedding = HuggingFaceEmbeddings( |
|
model_name="moka-ai/m3e-base", model_kwargs={"device": "cpu"}, encode_kwargs={"normalize_embeddings": False} |
|
) |
|
|
|
# Define memory with summarization ability |
|
memory = ConversationBufferWithSummary( |
|
llm=llm, max_tokens=2000, llm_kwargs={"max_new_tokens": 50, "temperature": 0.6, "do_sample": True} |
|
) |
|
|
|
# Define the chain to preprocess the input |
|
# Disambiguate the input. e.g. "What is the capital of that country?" -> "What is the capital of France?" |
|
llm_chain_disambiguate = LLMChain( |
|
llm=llm, prompt=PROMPT_DISAMBIGUATE_EN, llm_kwargs={"max_new_tokens": 30, "temperature": 0.6, "do_sample": True} |
|
) |
|
|
|
def disambiguity(input): |
|
out = llm_chain_disambiguate.run(input=input, chat_history=memory.buffer, stop=["\n"]) |
|
return out.split("\n")[0] |
|
|
|
# Load data to vector store |
|
print("Select files for constructing retriever") |
|
documents = [] |
|
|
|
# preprocess data |
|
if not os.path.exists("../data/data_sample/custom_service_preprocessed.json"): |
|
if not os.path.exists("../data/data_sample/custom_service.json"): |
|
raise ValueError( |
|
"custom_service.json not found, please download the data from HuggingFace Datasets: qgyd2021/e_commerce_customer_service" |
|
) |
|
data = json.load(open("../data/data_sample/custom_service.json", "r", encoding="utf8")) |
|
preprocessed = [] |
|
for row in data["rows"]: |
|
preprocessed.append({"key": row["row"]["query"], "value": row["row"]["response"]}) |
|
data = {} |
|
data["data"] = preprocessed |
|
with open("../data/data_sample/custom_service_preprocessed.json", "w", encoding="utf8") as f: |
|
json.dump(data, f, ensure_ascii=False) |
|
|
|
# define metadata function which is used to format the prompt with value in metadata instead of key, |
|
# the later is langchain's default behavior |
|
def metadata_func(data_sample, additional_fields): |
|
""" |
|
metadata_func (Callable[Dict, Dict]): A function that takes in the JSON |
|
object extracted by the jq_schema and the default metadata and returns |
|
a dict of the updated metadata. |
|
|
|
To use key-value format, the metadata_func should be defined as follows: |
|
metadata = {'value': 'a string to be used to format the prompt', 'is_key_value_mapping': True} |
|
""" |
|
metadata = {} |
|
metadata["value"] = f"Question: {data_sample['key']}\nAnswer:{data_sample['value']}" |
|
metadata["is_key_value_mapping"] = True |
|
assert "value" not in additional_fields |
|
assert "is_key_value_mapping" not in additional_fields |
|
metadata.update(additional_fields) |
|
return metadata |
|
|
|
retriever_data = DocumentLoader( |
|
[["../data/data_sample/custom_service_preprocessed.json", "CustomerServiceDemo"]], |
|
content_key="key", |
|
metadata_func=metadata_func, |
|
).all_data |
|
|
|
# Split |
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=20) |
|
splits = text_splitter.split_documents(retriever_data) |
|
documents.extend(splits) |
|
|
|
# Create retriever |
|
information_retriever.add_documents(docs=documents, cleanup="incremental", mode="by_source", embedding=embedding) |
|
|
|
# Set document retrieval chain, we need this chain to calculate prompt length |
|
memory.initiate_document_retrieval_chain( |
|
llm, |
|
PROMPT_RETRIEVAL_QA_EN, |
|
information_retriever, |
|
chain_type_kwargs={ |
|
"chat_history": "", |
|
}, |
|
) |
|
|
|
# Define retrieval chain |
|
retrieval_chain = RetrievalQA.from_chain_type( |
|
llm=llm, |
|
verbose=False, |
|
chain_type="stuff", |
|
retriever=information_retriever, |
|
chain_type_kwargs={"prompt": PROMPT_RETRIEVAL_QA_EN, "memory": memory}, |
|
llm_kwargs={"max_new_tokens": 50, "temperature": 0.75, "do_sample": True}, |
|
) |
|
# Set disambiguity handler |
|
information_retriever.set_rephrase_handler(disambiguity) |
|
# Start conversation |
|
while True: |
|
user_input = input("User: ") |
|
if "END" == user_input: |
|
print("Agent: Happy to chat with you :)") |
|
break |
|
agent_response = retrieval_chain.run( |
|
query=user_input, |
|
stop=["Human: "], |
|
rejection_trigger_keywords=EN_RETRIEVAL_QA_TRIGGER_KEYWORDS, |
|
rejection_answer=EN_RETRIEVAL_QA_REJECTION_ANSWER, |
|
) |
|
agent_response = agent_response.split("\n")[0] |
|
print(f"Agent: {agent_response}")
|
|
|