2021-11-03 08:07:28 +00:00
# Colossal-AI
2022-03-11 05:53:38 +00:00
< div id = "top" align = "center" >
2022-01-19 08:06:53 +00:00
2022-03-11 05:53:38 +00:00
[![logo ](https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/Colossal-AI_logo.png )](https://www.colossalai.org/)
An integrated large-scale model training system with efficient parallelization techniques.
2022-01-19 08:06:53 +00:00
2022-02-03 03:37:17 +00:00
< h3 > < a href = "https://arxiv.org/abs/2110.14883" > Paper < / a > |
< a href = "https://www.colossalai.org/" > Documentation < / a > |
< a href = "https://github.com/hpcaitech/ColossalAI-Examples" > Examples < / a > |
< a href = "https://github.com/hpcaitech/ColossalAI/discussions" > Forum < / a > |
2022-03-11 05:53:38 +00:00
< a href = "https://medium.com/@hpcaitech" > Blog < / a > < / h3 >
2022-02-14 09:22:48 +00:00
2022-03-13 01:11:48 +00:00
[![Build ](https://github.com/hpcaitech/ColossalAI/actions/workflows/build.yml/badge.svg )](https://github.com/hpcaitech/ColossalAI/actions/workflows/build.yml)
2022-01-19 12:15:14 +00:00
[![Documentation ](https://readthedocs.org/projects/colossalai/badge/?version=latest )](https://colossalai.readthedocs.io/en/latest/?badge=latest)
2022-03-16 09:43:52 +00:00
[![CodeFactor ](https://www.codefactor.io/repository/github/hpcaitech/colossalai/badge )](https://www.codefactor.io/repository/github/hpcaitech/colossalai)
2022-03-14 09:07:01 +00:00
[![HuggingFace badge ](https://img.shields.io/badge/%F0%9F%A4%97HuggingFace-Join-yellow )](https://huggingface.co/hpcai-tech)
2022-03-04 10:04:51 +00:00
[![slack badge ](https://img.shields.io/badge/Slack-join-blueviolet?logo=slack& )](https://join.slack.com/t/colossalaiworkspace/shared_invite/zt-z7b26eeb-CBp7jouvu~r0~lcFzX832w)
2022-03-11 05:53:38 +00:00
[![WeChat badge ](https://img.shields.io/badge/微信-加入-green?logo=wechat& )](https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/WeChat.png)
2022-03-14 09:07:01 +00:00
2022-02-18 08:28:37 +00:00
| [English ](README.md ) | [中文 ](README-zh-Hans.md ) |
2022-03-11 05:53:38 +00:00
2022-01-19 06:29:31 +00:00
< / div >
2021-10-29 01:29:20 +00:00
2022-03-11 05:53:38 +00:00
## Table of Contents
< ul >
< li > < a href = "#Features" > Features< / a > < / li >
< li >
< a href = "#Demo" > Demo< / a >
< ul >
< li > < a href = "#ViT" > ViT< / a > < / li >
< li > < a href = "#GPT-3" > GPT-3< / a > < / li >
< li > < a href = "#GPT-2" > GPT-2< / a > < / li >
< li > < a href = "#BERT" > BERT< / a > < / li >
< / ul >
< / li >
< li >
< a href = "#Installation" > Installation< / a >
< ul >
< li > < a href = "#PyPI" > PyPI< / a > < / li >
< li > < a href = "#Install-From-Source" > Install From Source< / a > < / li >
< / ul >
< / li >
< li > < a href = "#Use-Docker" > Use Docker< / a > < / li >
< li > < a href = "#Community" > Community< / a > < / li >
< li > < a href = "#contributing" > Contributing< / a > < / li >
< li > < a href = "#Quick-View" > Quick View< / a > < / li >
< ul >
< li > < a href = "#Start-Distributed-Training-in-Lines" > Start Distributed Training in Lines< / a > < / li >
< li > < a href = "#Write-a-Simple-2D-Parallel-Model" > Write a Simple 2D Parallel Model< / a > < / li >
< / ul >
< li > < a href = "#Cite-Us" > Cite Us< / a > < / li >
< / ul >
2022-02-18 08:28:37 +00:00
## Features
Colossal-AI provides a collection of parallel training components for you. We aim to support you to write your
2022-03-25 04:12:05 +00:00
distributed deep learning models just like how you write your model on your laptop. We provide user-friendly tools to kickstart
2022-02-18 08:28:37 +00:00
distributed training in a few lines.
- Data Parallelism
- Pipeline Parallelism
- 1D, 2D, 2.5D, 3D tensor parallelism
- Sequence parallelism
- Friendly trainer and engine
- Extensible for new parallelism
- Mixed Precision Training
- Zero Redundancy Optimizer (ZeRO)
2022-03-11 05:53:38 +00:00
< p align = "right" > (< a href = "#top" > back to top< / a > )< / p >
## Demo
2022-02-18 08:28:37 +00:00
### ViT
2022-03-10 05:32:56 +00:00
< img src = "https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/ViT.png" width = "450" / >
2022-02-18 08:28:37 +00:00
2022-03-25 04:12:05 +00:00
- 14x larger batch size, and 5x faster training for Tensor Parallelism = 64
2022-02-18 08:28:37 +00:00
2022-02-28 08:03:13 +00:00
### GPT-3
2022-03-10 05:32:56 +00:00
< img src = "https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/GPT3.png" width = 700/ >
2022-02-18 08:28:37 +00:00
2022-03-25 04:12:05 +00:00
- Save 50% GPU resources, and 10.7% acceleration
2022-02-28 08:03:13 +00:00
### GPT-2
2022-03-10 05:32:56 +00:00
< img src = "https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/GPT2.png" width = 800/ >
2022-02-28 08:03:13 +00:00
2022-03-25 04:12:05 +00:00
- 11x lower GPU memory consumption, and superlinear scaling efficiency with Tensor Parallelism
2022-02-28 08:03:13 +00:00
2022-03-21 08:34:07 +00:00
< img src = "https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/Colossal-AI%20with%20ZeRO.jpg" width = 393 >
2022-03-25 04:12:05 +00:00
- 10.7x larger model size on the same hardware
2022-02-18 08:28:37 +00:00
### BERT
2022-03-10 05:32:56 +00:00
< img src = "https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/BERT.png" width = 800/ >
2022-02-18 08:28:37 +00:00
2022-02-28 09:07:14 +00:00
- 2x faster training, or 50% longer sequence length
2022-02-18 08:28:37 +00:00
Please visit our [documentation and tutorials ](https://www.colossalai.org/ ) for more details.
2022-03-11 05:53:38 +00:00
< p align = "right" > (< a href = "#top" > back to top< / a > )< / p >
2022-02-18 08:28:37 +00:00
2021-10-28 16:21:23 +00:00
## Installation
2022-02-14 09:09:30 +00:00
### PyPI
```bash
pip install colossalai
```
This command will install CUDA extension if your have installed CUDA, NVCC and torch.
2021-12-13 14:07:01 +00:00
2022-02-14 09:09:30 +00:00
If you don't want to install CUDA extension, you should add `--global-option="--no_cuda_ext"` , like:
```bash
pip install colossalai --global-option="--no_cuda_ext"
```
If you want to use `ZeRO` , you can run:
```bash
pip install colossalai[zero]
```
### Install From Source
2022-03-25 04:12:05 +00:00
> The version of Colossal-AI will be in line with the main branch of the repository. Feel free to create an issue if you encounter any problems. :-)
2021-10-28 16:21:23 +00:00
```shell
2021-12-13 14:07:01 +00:00
git clone https://github.com/hpcaitech/ColossalAI.git
2021-10-28 16:21:23 +00:00
cd ColossalAI
# install dependency
pip install -r requirements/requirements.txt
# install colossalai
pip install .
```
2022-02-14 09:09:30 +00:00
If you don't want to install and enable CUDA kernel fusion (compulsory installation when using fused optimizer):
2021-10-28 16:21:23 +00:00
```shell
2022-02-14 09:09:30 +00:00
pip install --global-option="--no_cuda_ext" .
2021-10-28 16:21:23 +00:00
```
2022-03-11 05:53:38 +00:00
< p align = "right" > (< a href = "#top" > back to top< / a > )< / p >
2022-03-04 10:04:51 +00:00
2022-01-18 05:35:18 +00:00
## Use Docker
Run the following command to build a docker image from Dockerfile provided.
```bash
cd ColossalAI
docker build -t colossalai ./docker
```
Run the following command to start the docker container in interactive mode.
```bash
docker run -ti --gpus all --rm --ipc=host colossalai bash
```
2022-03-11 05:53:38 +00:00
< p align = "right" > (< a href = "#top" > back to top< / a > )< / p >
2022-03-04 10:04:51 +00:00
## Community
Join the Colossal-AI community on [Forum ](https://github.com/hpcaitech/ColossalAI/discussions ),
[Slack ](https://join.slack.com/t/colossalaiworkspace/shared_invite/zt-z7b26eeb-CBp7jouvu~r0~lcFzX832w ),
2022-03-25 04:12:05 +00:00
and [WeChat ](https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/WeChat.png "qrcode" ) to share your suggestions, feedback, and questions with our engineering team.
2022-03-04 10:04:51 +00:00
2022-02-14 09:22:48 +00:00
## Contributing
2022-03-04 10:04:51 +00:00
If you wish to contribute to this project, please follow the guideline in [Contributing ](./CONTRIBUTING.md ).
Thanks so much to all of our amazing contributors!
2022-02-14 09:22:48 +00:00
2022-03-04 10:04:51 +00:00
< a href = "https://github.com/hpcaitech/ColossalAI/graphs/contributors" > < img src = "https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/contributor_avatar.png" width = "800px" > < / a >
*The order of contributor avatars is randomly shuffled.*
2022-02-14 09:22:48 +00:00
2022-03-11 05:53:38 +00:00
< p align = "right" > (< a href = "#top" > back to top< / a > )< / p >
2021-10-28 16:21:23 +00:00
## Quick View
### Start Distributed Training in Lines
```python
import colossalai
2021-12-10 06:37:33 +00:00
from colossalai.utils import get_dataloader
# my_config can be path to config file or a dictionary obj
# 'localhost' is only for single node, you need to specify
# the node name if using multiple nodes
colossalai.launch(
config=my_config,
rank=rank,
world_size=world_size,
backend='nccl',
port=29500,
host='localhost'
2021-10-28 16:21:23 +00:00
)
2021-12-10 06:37:33 +00:00
# build your model
2022-01-19 08:06:53 +00:00
model = ...
2021-12-10 06:37:33 +00:00
2022-01-19 08:06:53 +00:00
# build you dataset, the dataloader will have distributed data
2021-12-10 06:37:33 +00:00
# sampler by default
2022-01-19 08:06:53 +00:00
train_dataset = ...
2021-12-10 06:37:33 +00:00
train_dataloader = get_dataloader(dataset=dataset,
2022-01-19 06:29:31 +00:00
shuffle=True
2021-12-13 14:07:01 +00:00
)
2021-12-10 06:37:33 +00:00
2022-02-18 08:28:37 +00:00
# build your optimizer
2022-01-19 08:06:53 +00:00
optimizer = ...
2021-12-10 06:37:33 +00:00
# build your loss function
criterion = ...
2022-02-18 08:28:37 +00:00
# initialize colossalai
2021-12-10 06:37:33 +00:00
engine, train_dataloader, _, _ = colossalai.initialize(
model=model,
optimizer=optimizer,
criterion=criterion,
train_dataloader=train_dataloader
)
# start training
engine.train()
for epoch in range(NUM_EPOCHS):
for data, label in train_dataloader:
engine.zero_grad()
output = engine(data)
loss = engine.criterion(output, label)
engine.backward(loss)
engine.step()
2021-10-28 16:21:23 +00:00
```
### Write a Simple 2D Parallel Model
Let's say we have a huge MLP model and its very large hidden size makes it difficult to fit into a single GPU. We can
then distribute the model weights across GPUs in a 2D mesh while you still write your model in a familiar way.
```python
from colossalai.nn import Linear2D
import torch.nn as nn
class MLP_2D(nn.Module):
def __init__ (self):
super().__init__()
self.linear_1 = Linear2D(in_features=1024, out_features=16384)
self.linear_2 = Linear2D(in_features=16384, out_features=1024)
def forward(self, x):
x = self.linear_1(x)
x = self.linear_2(x)
return x
```
2022-03-11 05:53:38 +00:00
< p align = "right" > (< a href = "#top" > back to top< / a > )< / p >
2021-10-28 16:21:23 +00:00
2021-11-03 08:07:28 +00:00
## Cite Us
2021-10-28 16:21:23 +00:00
2021-11-03 08:07:28 +00:00
```
@article {bian2021colossal,
title={Colossal-AI: A Unified Deep Learning System For Large-Scale Parallel Training},
author={Bian, Zhengda and Liu, Hongxin and Wang, Boxiang and Huang, Haichen and Li, Yongbin and Wang, Chuanrui and Cui, Fan and You, Yang},
journal={arXiv preprint arXiv:2110.14883},
year={2021}
}
```
2022-03-11 05:53:38 +00:00
< p align = "right" > (< a href = "#top" > back to top< / a > )< / p >