You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/examples/images/diffusion/README.md

259 lines
11 KiB

# ColoDiffusion: Stable Diffusion with Colossal-AI
Acceleration of AIGC (AI-Generated Content) models such as [Stable Diffusion v1](https://github.com/CompVis/stable-diffusion) and [Stable Diffusion v2](https://github.com/Stability-AI/stablediffusion).
<p id="diffusion_train" align="center">
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/Stable%20Diffusion%20v2.png" width=800/>
</p>
- [Training](https://github.com/hpcaitech/ColossalAI/tree/main/examples/images/diffusion): Reduce Stable Diffusion memory consumption by up to 5.6x and hardware cost by up to 46x (from A100 to RTX3060).
<p id="diffusion_demo" align="center">
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/DreamBooth.png" width=800/>
</p>
- [DreamBooth Fine-tuning](https://github.com/hpcaitech/ColossalAI/tree/main/examples/images/dreambooth): Personalize your model using just 3-5 images of the desired subject.
<p id="inference" align="center">
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/Stable%20Diffusion%20Inference.jpg" width=800/>
</p>
- [Inference](https://github.com/hpcaitech/ColossalAI/tree/main/examples/images/diffusion): Reduce inference GPU memory consumption by 2.5x.
More details can be found in our [blog of Stable Diffusion v1](https://www.hpc-ai.tech/blog/diffusion-pretraining-and-hardware-fine-tuning-can-be-almost-7x-cheaper) and [blog of Stable Diffusion v2](https://www.hpc-ai.tech/blog/colossal-ai-0-2-0).
Update metainfo patch branch (#2517) * init * rename and remove useless func * basic chunk * add evoformer * align evoformer * add meta * basic chunk * basic memory * finish basic inference memory estimation * finish memory estimation * fix bug * finish memory estimation * add part of index tracer * finish basic index tracer * add doc string * add doc str * polish code * polish code * update active log * polish code * add possible region search * finish region search loop * finish chunk define * support new op * rename index tracer * finishi codegen on msa * redesign index tracer, add source and change compute * pass outproduct mean * code format * code format * work with outerproductmean and msa * code style * code style * code style * code style * change threshold * support check_index_duplicate * support index dupilictae and update loop * support output * update memory estimate * optimise search * fix layernorm * move flow tracer * refactor flow tracer * format code * refactor flow search * code style * adapt codegen to prepose node * code style * remove abandoned function * remove flow tracer * code style * code style * reorder nodes * finish node reorder * update run * code style * add chunk select class * add chunk select * code style * add chunksize in emit, fix bug in reassgin shape * code style * turn off print mem * add evoformer openfold init * init openfold * add benchmark * add print * code style * code style * init openfold * update openfold * align openfold * use max_mem to control stratge * update source add * add reorder in mem estimator * improve reorder efficeincy * support ones_like, add prompt if fit mode search fail * fix a bug in ones like, dont gen chunk if dim size is 1 * fix bug again * update min memory stratege, reduce mem usage by 30% * last version of benchmark * refactor structure * restruct dir * update test * rename * take apart chunk code gen * close mem and code print * code format * rename ambiguous variable * seperate flow tracer * seperate input node dim search * seperate prepose_nodes * seperate non chunk input * seperate reorder * rename * ad reorder graph * seperate trace flow * code style * code style * fix typo * set benchmark * rename test * update codegen test * Fix state_dict key missing issue of the ZeroDDP (#2363) * Fix state_dict output for ZeroDDP duplicated parameters * Rewrite state_dict based on get_static_torch_model * Modify get_static_torch_model to be compatible with the lower version (ZeroDDP) * update codegen test * update codegen test * add chunk search test * code style * add available * [hotfix] fix gpt gemini example (#2404) * [hotfix] fix gpt gemini example * [example] add new assertions * remove autochunk_available * [workflow] added nightly release to pypi (#2403) * add comments * code style * add doc for search chunk * [doc] updated readme regarding pypi installation (#2406) * add doc for search * [doc] updated kernel-related optimisers' docstring (#2385) * [doc] updated kernel-related optimisers' docstring * polish doc * rename trace_index to trace_indice * rename function from index to indice * rename * rename in doc * [polish] polish code for get_static_torch_model (#2405) * [gemini] polish code * [testing] remove code * [gemini] make more robust * rename * rename * remove useless function * [worfklow] added coverage test (#2399) * [worfklow] added coverage test * polish code * polish code * polish code * polish code * polish code * polish code * polish code * polish code * add doc for trace indice * [docker] updated Dockerfile and release workflow (#2410) * add doc * update doc * add available * change imports * add test in import * [workflow] refactored the example check workflow (#2411) * [workflow] refactored the example check workflow * polish code * polish code * polish code * polish code * polish code * polish code * polish code * polish code * polish code * polish code * polish code * Update parallel_context.py (#2408) * [hotfix] add DISTPAN argument for benchmark (#2412) * change the benchmark config file * change config * revert config file * rename distpan to distplan * [workflow] added precommit check for code consistency (#2401) * [workflow] added precommit check for code consistency * polish code * polish code * polish code * polish code * polish code * polish code * polish code * adapt new fx * [workflow] added translation for non-english comments (#2414) * [setup] refactored setup.py for dependency graph (#2413) * change import * update doc * [workflow] auto comment if precommit check fails (#2417) * [hotfix] add norm clearing for the overflow step (#2416) * [examples] adding tflops to PaLM (#2365) * [workflow]auto comment with test coverage report (#2419) * [workflow]auto comment with test coverage report * polish code * polish yaml * [doc] added documentation for CI/CD (#2420) * [doc] added documentation for CI/CD * polish markdown * polish markdown * polish markdown * [example] removed duplicated stable diffusion example (#2424) * [zero] add inference mode and its unit test (#2418) * [workflow] report test coverage even if below threshold (#2431) * [example] improved the clarity yof the example readme (#2427) * [example] improved the clarity yof the example readme * polish workflow * polish workflow * polish workflow * polish workflow * polish workflow * polish workflow * [ddp] add is_ddp_ignored (#2434) [ddp] rename to is_ddp_ignored * [workflow] make test coverage report collapsable (#2436) * [autoparallel] add shard option (#2423) * [fx] allow native ckpt trace and codegen. (#2438) * [cli] provided more details if colossalai run fail (#2442) * [autoparallel] integrate device mesh initialization into autoparallelize (#2393) * [autoparallel] integrate device mesh initialization into autoparallelize * add megatron solution * update gpt autoparallel examples with latest api * adapt beta value to fit the current computation cost * [zero] fix state_dict and load_state_dict for ddp ignored parameters (#2443) * [ddp] add is_ddp_ignored [ddp] rename to is_ddp_ignored * [zero] fix state_dict and load_state_dict * fix bugs * [zero] update unit test for ZeroDDP * [example] updated the hybrid parallel tutorial (#2444) * [example] updated the hybrid parallel tutorial * polish code * [zero] add warning for ignored parameters (#2446) * [example] updated large-batch optimizer tutorial (#2448) * [example] updated large-batch optimizer tutorial * polish code * polish code * [example] fixed seed error in train_dreambooth_colossalai.py (#2445) * [workflow] fixed the on-merge condition check (#2452) * [workflow] automated the compatiblity test (#2453) * [workflow] automated the compatiblity test * polish code * [autoparallel] update binary elementwise handler (#2451) * [autoparallel] update binary elementwise handler * polish * [workflow] automated bdist wheel build (#2459) * [workflow] automated bdist wheel build * polish workflow * polish readme * polish readme * Fix False warning in initialize.py (#2456) * Update initialize.py * pre-commit run check * [examples] update autoparallel tutorial demo (#2449) * [examples] update autoparallel tutorial demo * add test_ci.sh * polish * add conda yaml * [cli] fixed hostname mismatch error (#2465) * [example] integrate autoparallel demo with CI (#2466) * [example] integrate autoparallel demo with CI * polish code * polish code * polish code * polish code * [zero] low level optim supports ProcessGroup (#2464) * [example] update vit ci script (#2469) * [example] update vit ci script * [example] update requirements * [example] update requirements * [example] integrate seq-parallel tutorial with CI (#2463) * [zero] polish low level optimizer (#2473) * polish pp middleware (#2476) Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com> * [example] update gpt gemini example ci test (#2477) * [zero] add unit test for low-level zero init (#2474) * [workflow] fixed the skip condition of example weekly check workflow (#2481) * [example] stable diffusion add roadmap * add dummy test_ci.sh * [example] stable diffusion add roadmap (#2482) * [CI] add test_ci.sh for palm, opt and gpt (#2475) * polish code * [example] titans for gpt * polish readme * remove license * polish code * update readme * [example] titans for gpt (#2484) * [autoparallel] support origin activation ckpt on autoprallel system (#2468) * [autochunk] support evoformer tracer (#2485) support full evoformer tracer, which is a main module of alphafold. previously we just support a simplifed version of it. 1. support some evoformer's op in fx 2. support evoformer test 3. add repos for test code * [example] fix requirements (#2488) * [zero] add unit testings for hybrid parallelism (#2486) * [hotfix] gpt example titans bug #2493 * polish code and fix dataloader bugs * [hotfix] gpt example titans bug #2493 (#2494) * [fx] allow control of ckpt_codegen init (#2498) * [fx] allow control of ckpt_codegen init Currently in ColoGraphModule, ActivationCheckpointCodeGen will be set automatically in __init__. But other codegen can't be set if so. So I add an arg to control whether to set ActivationCheckpointCodeGen in __init__. * code style * [example] dreambooth example * add test_ci.sh to dreambooth * [autochunk] support autochunk on evoformer (#2497) * Revert "Update parallel_context.py (#2408)" This reverts commit 7d5640b9db01b501e95b66e91be9fe27b58d2e58. * add avg partition (#2483) Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com> * [auto-chunk] support extramsa (#3) (#2504) * [utils] lazy init. (#2148) * [utils] lazy init. * [utils] remove description. * [utils] complete. * [utils] finalize. * [utils] fix names. * [autochunk] support parsing blocks (#2506) * [zero] add strict ddp mode (#2508) * [zero] add strict ddp mode * [polish] add comments for strict ddp mode * [zero] fix test error * [doc] update opt and tutorial links (#2509) * [workflow] fixed changed file detection (#2515) Co-authored-by: oahzxl <xuanlei.zhao@gmail.com> Co-authored-by: eric8607242 <e0928021388@gmail.com> Co-authored-by: HELSON <c2h214748@gmail.com> Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: Haofan Wang <haofanwang.ai@gmail.com> Co-authored-by: Jiarui Fang <fangjiarui123@gmail.com> Co-authored-by: ZijianYY <119492445+ZijianYY@users.noreply.github.com> Co-authored-by: YuliangLiu0306 <72588413+YuliangLiu0306@users.noreply.github.com> Co-authored-by: Super Daniel <78588128+super-dainiu@users.noreply.github.com> Co-authored-by: ver217 <lhx0217@gmail.com> Co-authored-by: Ziyue Jiang <ziyue.jiang97@gmail.com> Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com> Co-authored-by: oahzxl <43881818+oahzxl@users.noreply.github.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> Co-authored-by: Fazzie-Maqianli <55798671+Fazziekey@users.noreply.github.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
2 years ago
## Roadmap
This project is in rapid development.
- [X] Train a stable diffusion model v1/v2 from scatch
- [X] Finetune a pretrained Stable diffusion v1 model
- [X] Inference a pretrained model using PyTorch
- [ ] Finetune a pretrained Stable diffusion v2 model
- [ ] Inference a pretrained model using TensoRT
## Installation
### Option #1: install from source
#### Step 1: Requirements
A suitable [conda](https://conda.io/) environment named `ldm` can be created
and activated with:
```
conda env create -f environment.yaml
conda activate ldm
```
You can also update an existing [latent diffusion](https://github.com/CompVis/latent-diffusion) environment by running
```
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch
pip install transformers==4.19.2 diffusers invisible-watermark
pip install -e .
```
##### Step 2: install lightning
Install Lightning version later than 2022.01.04. We suggest you install lightning from source.
https://github.com/Lightning-AI/lightning.git
##### Step 3:Install [Colossal-AI](https://colossalai.org/download/) From Our Official Website
For example, you can install v0.1.12 from our official website.
```
pip install colossalai==0.1.12+torch1.12cu11.3 -f https://release.colossalai.org
```
### Option #2: Use Docker
To use the stable diffusion Docker image, you can either build using the provided the [Dockerfile](./docker/Dockerfile) or pull a Docker image from our Docker hub.
```
# 1. build from dockerfile
cd docker
docker build -t hpcaitech/diffusion:0.2.0 .
# 2. pull from our docker hub
docker pull hpcaitech/diffusion:0.2.0
```
Once you have the image ready, you can launch the image with the following command:
```bash
########################
# On Your Host Machine #
########################
# make sure you start your image in the repository root directory
cd Colossal-AI
# run the docker container
docker run --rm \
-it --gpus all \
-v $PWD:/workspace \
-v <your-data-dir>:/data/scratch \
-v <hf-cache-dir>:/root/.cache/huggingface \
hpcaitech/diffusion:0.2.0 \
/bin/bash
########################
# Insider Container #
########################
# Once you have entered the docker container, go to the stable diffusion directory for training
cd examples/images/diffusion/
# start training with colossalai
bash train_colossalai.sh
```
It is important for you to configure your volume mapping in order to get the best training experience.
1. **Mandatory**, mount your prepared data to `/data/scratch` via `-v <your-data-dir>:/data/scratch`, where you need to replace `<your-data-dir>` with the actual data path on your machine.
2. **Recommended**, store the downloaded model weights to your host machine instead of the container directory via `-v <hf-cache-dir>:/root/.cache/huggingface`, where you need to repliace the `<hf-cache-dir>` with the actual path. In this way, you don't have to repeatedly download the pretrained weights for every `docker run`.
3. **Optional**, if you encounter any problem stating that shared memory is insufficient inside container, please add `-v /dev/shm:/dev/shm` to your `docker run` command.
## Download the model checkpoint from pretrained
### stable-diffusion-v1-4
Our default model config use the weight from [CompVis/stable-diffusion-v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4?text=A+mecha+robot+in+a+favela+in+expressionist+style)
```
git lfs install
git clone https://huggingface.co/CompVis/stable-diffusion-v1-4
```
### stable-diffusion-v1-5 from runway
Update metainfo patch branch (#2517) * init * rename and remove useless func * basic chunk * add evoformer * align evoformer * add meta * basic chunk * basic memory * finish basic inference memory estimation * finish memory estimation * fix bug * finish memory estimation * add part of index tracer * finish basic index tracer * add doc string * add doc str * polish code * polish code * update active log * polish code * add possible region search * finish region search loop * finish chunk define * support new op * rename index tracer * finishi codegen on msa * redesign index tracer, add source and change compute * pass outproduct mean * code format * code format * work with outerproductmean and msa * code style * code style * code style * code style * change threshold * support check_index_duplicate * support index dupilictae and update loop * support output * update memory estimate * optimise search * fix layernorm * move flow tracer * refactor flow tracer * format code * refactor flow search * code style * adapt codegen to prepose node * code style * remove abandoned function * remove flow tracer * code style * code style * reorder nodes * finish node reorder * update run * code style * add chunk select class * add chunk select * code style * add chunksize in emit, fix bug in reassgin shape * code style * turn off print mem * add evoformer openfold init * init openfold * add benchmark * add print * code style * code style * init openfold * update openfold * align openfold * use max_mem to control stratge * update source add * add reorder in mem estimator * improve reorder efficeincy * support ones_like, add prompt if fit mode search fail * fix a bug in ones like, dont gen chunk if dim size is 1 * fix bug again * update min memory stratege, reduce mem usage by 30% * last version of benchmark * refactor structure * restruct dir * update test * rename * take apart chunk code gen * close mem and code print * code format * rename ambiguous variable * seperate flow tracer * seperate input node dim search * seperate prepose_nodes * seperate non chunk input * seperate reorder * rename * ad reorder graph * seperate trace flow * code style * code style * fix typo * set benchmark * rename test * update codegen test * Fix state_dict key missing issue of the ZeroDDP (#2363) * Fix state_dict output for ZeroDDP duplicated parameters * Rewrite state_dict based on get_static_torch_model * Modify get_static_torch_model to be compatible with the lower version (ZeroDDP) * update codegen test * update codegen test * add chunk search test * code style * add available * [hotfix] fix gpt gemini example (#2404) * [hotfix] fix gpt gemini example * [example] add new assertions * remove autochunk_available * [workflow] added nightly release to pypi (#2403) * add comments * code style * add doc for search chunk * [doc] updated readme regarding pypi installation (#2406) * add doc for search * [doc] updated kernel-related optimisers' docstring (#2385) * [doc] updated kernel-related optimisers' docstring * polish doc * rename trace_index to trace_indice * rename function from index to indice * rename * rename in doc * [polish] polish code for get_static_torch_model (#2405) * [gemini] polish code * [testing] remove code * [gemini] make more robust * rename * rename * remove useless function * [worfklow] added coverage test (#2399) * [worfklow] added coverage test * polish code * polish code * polish code * polish code * polish code * polish code * polish code * polish code * add doc for trace indice * [docker] updated Dockerfile and release workflow (#2410) * add doc * update doc * add available * change imports * add test in import * [workflow] refactored the example check workflow (#2411) * [workflow] refactored the example check workflow * polish code * polish code * polish code * polish code * polish code * polish code * polish code * polish code * polish code * polish code * polish code * Update parallel_context.py (#2408) * [hotfix] add DISTPAN argument for benchmark (#2412) * change the benchmark config file * change config * revert config file * rename distpan to distplan * [workflow] added precommit check for code consistency (#2401) * [workflow] added precommit check for code consistency * polish code * polish code * polish code * polish code * polish code * polish code * polish code * adapt new fx * [workflow] added translation for non-english comments (#2414) * [setup] refactored setup.py for dependency graph (#2413) * change import * update doc * [workflow] auto comment if precommit check fails (#2417) * [hotfix] add norm clearing for the overflow step (#2416) * [examples] adding tflops to PaLM (#2365) * [workflow]auto comment with test coverage report (#2419) * [workflow]auto comment with test coverage report * polish code * polish yaml * [doc] added documentation for CI/CD (#2420) * [doc] added documentation for CI/CD * polish markdown * polish markdown * polish markdown * [example] removed duplicated stable diffusion example (#2424) * [zero] add inference mode and its unit test (#2418) * [workflow] report test coverage even if below threshold (#2431) * [example] improved the clarity yof the example readme (#2427) * [example] improved the clarity yof the example readme * polish workflow * polish workflow * polish workflow * polish workflow * polish workflow * polish workflow * [ddp] add is_ddp_ignored (#2434) [ddp] rename to is_ddp_ignored * [workflow] make test coverage report collapsable (#2436) * [autoparallel] add shard option (#2423) * [fx] allow native ckpt trace and codegen. (#2438) * [cli] provided more details if colossalai run fail (#2442) * [autoparallel] integrate device mesh initialization into autoparallelize (#2393) * [autoparallel] integrate device mesh initialization into autoparallelize * add megatron solution * update gpt autoparallel examples with latest api * adapt beta value to fit the current computation cost * [zero] fix state_dict and load_state_dict for ddp ignored parameters (#2443) * [ddp] add is_ddp_ignored [ddp] rename to is_ddp_ignored * [zero] fix state_dict and load_state_dict * fix bugs * [zero] update unit test for ZeroDDP * [example] updated the hybrid parallel tutorial (#2444) * [example] updated the hybrid parallel tutorial * polish code * [zero] add warning for ignored parameters (#2446) * [example] updated large-batch optimizer tutorial (#2448) * [example] updated large-batch optimizer tutorial * polish code * polish code * [example] fixed seed error in train_dreambooth_colossalai.py (#2445) * [workflow] fixed the on-merge condition check (#2452) * [workflow] automated the compatiblity test (#2453) * [workflow] automated the compatiblity test * polish code * [autoparallel] update binary elementwise handler (#2451) * [autoparallel] update binary elementwise handler * polish * [workflow] automated bdist wheel build (#2459) * [workflow] automated bdist wheel build * polish workflow * polish readme * polish readme * Fix False warning in initialize.py (#2456) * Update initialize.py * pre-commit run check * [examples] update autoparallel tutorial demo (#2449) * [examples] update autoparallel tutorial demo * add test_ci.sh * polish * add conda yaml * [cli] fixed hostname mismatch error (#2465) * [example] integrate autoparallel demo with CI (#2466) * [example] integrate autoparallel demo with CI * polish code * polish code * polish code * polish code * [zero] low level optim supports ProcessGroup (#2464) * [example] update vit ci script (#2469) * [example] update vit ci script * [example] update requirements * [example] update requirements * [example] integrate seq-parallel tutorial with CI (#2463) * [zero] polish low level optimizer (#2473) * polish pp middleware (#2476) Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com> * [example] update gpt gemini example ci test (#2477) * [zero] add unit test for low-level zero init (#2474) * [workflow] fixed the skip condition of example weekly check workflow (#2481) * [example] stable diffusion add roadmap * add dummy test_ci.sh * [example] stable diffusion add roadmap (#2482) * [CI] add test_ci.sh for palm, opt and gpt (#2475) * polish code * [example] titans for gpt * polish readme * remove license * polish code * update readme * [example] titans for gpt (#2484) * [autoparallel] support origin activation ckpt on autoprallel system (#2468) * [autochunk] support evoformer tracer (#2485) support full evoformer tracer, which is a main module of alphafold. previously we just support a simplifed version of it. 1. support some evoformer's op in fx 2. support evoformer test 3. add repos for test code * [example] fix requirements (#2488) * [zero] add unit testings for hybrid parallelism (#2486) * [hotfix] gpt example titans bug #2493 * polish code and fix dataloader bugs * [hotfix] gpt example titans bug #2493 (#2494) * [fx] allow control of ckpt_codegen init (#2498) * [fx] allow control of ckpt_codegen init Currently in ColoGraphModule, ActivationCheckpointCodeGen will be set automatically in __init__. But other codegen can't be set if so. So I add an arg to control whether to set ActivationCheckpointCodeGen in __init__. * code style * [example] dreambooth example * add test_ci.sh to dreambooth * [autochunk] support autochunk on evoformer (#2497) * Revert "Update parallel_context.py (#2408)" This reverts commit 7d5640b9db01b501e95b66e91be9fe27b58d2e58. * add avg partition (#2483) Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com> * [auto-chunk] support extramsa (#3) (#2504) * [utils] lazy init. (#2148) * [utils] lazy init. * [utils] remove description. * [utils] complete. * [utils] finalize. * [utils] fix names. * [autochunk] support parsing blocks (#2506) * [zero] add strict ddp mode (#2508) * [zero] add strict ddp mode * [polish] add comments for strict ddp mode * [zero] fix test error * [doc] update opt and tutorial links (#2509) * [workflow] fixed changed file detection (#2515) Co-authored-by: oahzxl <xuanlei.zhao@gmail.com> Co-authored-by: eric8607242 <e0928021388@gmail.com> Co-authored-by: HELSON <c2h214748@gmail.com> Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: Haofan Wang <haofanwang.ai@gmail.com> Co-authored-by: Jiarui Fang <fangjiarui123@gmail.com> Co-authored-by: ZijianYY <119492445+ZijianYY@users.noreply.github.com> Co-authored-by: YuliangLiu0306 <72588413+YuliangLiu0306@users.noreply.github.com> Co-authored-by: Super Daniel <78588128+super-dainiu@users.noreply.github.com> Co-authored-by: ver217 <lhx0217@gmail.com> Co-authored-by: Ziyue Jiang <ziyue.jiang97@gmail.com> Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com> Co-authored-by: oahzxl <43881818+oahzxl@users.noreply.github.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> Co-authored-by: Fazzie-Maqianli <55798671+Fazziekey@users.noreply.github.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
2 years ago
If you want to useed the Last [stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) weight from runwayml
```
git lfs install
git clone https://huggingface.co/runwayml/stable-diffusion-v1-5
```
## Dataset
The dataSet is from [LAION-5B](https://laion.ai/blog/laion-5b/), the subset of [LAION](https://laion.ai/),
you should the change the `data.file_path` in the `config/train_colossalai.yaml`
## Training
We provide the script `train_colossalai.sh` to run the training task with colossalai,
and can also use `train_ddp.sh` to run the training task with ddp to compare.
In `train_colossalai.sh` the main command is:
```
python main.py --logdir /tmp/ -t -b configs/train_colossalai.yaml
```
- you can change the `--logdir` to decide where to save the log information and the last checkpoint.
### Training config
You can change the trainging config in the yaml file
- devices: device number used for training, default 8
- max_epochs: max training epochs, default 2
- precision: the precision type used in training, default 16 (fp16), you must use fp16 if you want to apply colossalai
- more information about the configuration of ColossalAIStrategy can be found [here](https://pytorch-lightning.readthedocs.io/en/latest/advanced/model_parallel.html#colossal-ai)
Update metainfo patch branch (#2517) * init * rename and remove useless func * basic chunk * add evoformer * align evoformer * add meta * basic chunk * basic memory * finish basic inference memory estimation * finish memory estimation * fix bug * finish memory estimation * add part of index tracer * finish basic index tracer * add doc string * add doc str * polish code * polish code * update active log * polish code * add possible region search * finish region search loop * finish chunk define * support new op * rename index tracer * finishi codegen on msa * redesign index tracer, add source and change compute * pass outproduct mean * code format * code format * work with outerproductmean and msa * code style * code style * code style * code style * change threshold * support check_index_duplicate * support index dupilictae and update loop * support output * update memory estimate * optimise search * fix layernorm * move flow tracer * refactor flow tracer * format code * refactor flow search * code style * adapt codegen to prepose node * code style * remove abandoned function * remove flow tracer * code style * code style * reorder nodes * finish node reorder * update run * code style * add chunk select class * add chunk select * code style * add chunksize in emit, fix bug in reassgin shape * code style * turn off print mem * add evoformer openfold init * init openfold * add benchmark * add print * code style * code style * init openfold * update openfold * align openfold * use max_mem to control stratge * update source add * add reorder in mem estimator * improve reorder efficeincy * support ones_like, add prompt if fit mode search fail * fix a bug in ones like, dont gen chunk if dim size is 1 * fix bug again * update min memory stratege, reduce mem usage by 30% * last version of benchmark * refactor structure * restruct dir * update test * rename * take apart chunk code gen * close mem and code print * code format * rename ambiguous variable * seperate flow tracer * seperate input node dim search * seperate prepose_nodes * seperate non chunk input * seperate reorder * rename * ad reorder graph * seperate trace flow * code style * code style * fix typo * set benchmark * rename test * update codegen test * Fix state_dict key missing issue of the ZeroDDP (#2363) * Fix state_dict output for ZeroDDP duplicated parameters * Rewrite state_dict based on get_static_torch_model * Modify get_static_torch_model to be compatible with the lower version (ZeroDDP) * update codegen test * update codegen test * add chunk search test * code style * add available * [hotfix] fix gpt gemini example (#2404) * [hotfix] fix gpt gemini example * [example] add new assertions * remove autochunk_available * [workflow] added nightly release to pypi (#2403) * add comments * code style * add doc for search chunk * [doc] updated readme regarding pypi installation (#2406) * add doc for search * [doc] updated kernel-related optimisers' docstring (#2385) * [doc] updated kernel-related optimisers' docstring * polish doc * rename trace_index to trace_indice * rename function from index to indice * rename * rename in doc * [polish] polish code for get_static_torch_model (#2405) * [gemini] polish code * [testing] remove code * [gemini] make more robust * rename * rename * remove useless function * [worfklow] added coverage test (#2399) * [worfklow] added coverage test * polish code * polish code * polish code * polish code * polish code * polish code * polish code * polish code * add doc for trace indice * [docker] updated Dockerfile and release workflow (#2410) * add doc * update doc * add available * change imports * add test in import * [workflow] refactored the example check workflow (#2411) * [workflow] refactored the example check workflow * polish code * polish code * polish code * polish code * polish code * polish code * polish code * polish code * polish code * polish code * polish code * Update parallel_context.py (#2408) * [hotfix] add DISTPAN argument for benchmark (#2412) * change the benchmark config file * change config * revert config file * rename distpan to distplan * [workflow] added precommit check for code consistency (#2401) * [workflow] added precommit check for code consistency * polish code * polish code * polish code * polish code * polish code * polish code * polish code * adapt new fx * [workflow] added translation for non-english comments (#2414) * [setup] refactored setup.py for dependency graph (#2413) * change import * update doc * [workflow] auto comment if precommit check fails (#2417) * [hotfix] add norm clearing for the overflow step (#2416) * [examples] adding tflops to PaLM (#2365) * [workflow]auto comment with test coverage report (#2419) * [workflow]auto comment with test coverage report * polish code * polish yaml * [doc] added documentation for CI/CD (#2420) * [doc] added documentation for CI/CD * polish markdown * polish markdown * polish markdown * [example] removed duplicated stable diffusion example (#2424) * [zero] add inference mode and its unit test (#2418) * [workflow] report test coverage even if below threshold (#2431) * [example] improved the clarity yof the example readme (#2427) * [example] improved the clarity yof the example readme * polish workflow * polish workflow * polish workflow * polish workflow * polish workflow * polish workflow * [ddp] add is_ddp_ignored (#2434) [ddp] rename to is_ddp_ignored * [workflow] make test coverage report collapsable (#2436) * [autoparallel] add shard option (#2423) * [fx] allow native ckpt trace and codegen. (#2438) * [cli] provided more details if colossalai run fail (#2442) * [autoparallel] integrate device mesh initialization into autoparallelize (#2393) * [autoparallel] integrate device mesh initialization into autoparallelize * add megatron solution * update gpt autoparallel examples with latest api * adapt beta value to fit the current computation cost * [zero] fix state_dict and load_state_dict for ddp ignored parameters (#2443) * [ddp] add is_ddp_ignored [ddp] rename to is_ddp_ignored * [zero] fix state_dict and load_state_dict * fix bugs * [zero] update unit test for ZeroDDP * [example] updated the hybrid parallel tutorial (#2444) * [example] updated the hybrid parallel tutorial * polish code * [zero] add warning for ignored parameters (#2446) * [example] updated large-batch optimizer tutorial (#2448) * [example] updated large-batch optimizer tutorial * polish code * polish code * [example] fixed seed error in train_dreambooth_colossalai.py (#2445) * [workflow] fixed the on-merge condition check (#2452) * [workflow] automated the compatiblity test (#2453) * [workflow] automated the compatiblity test * polish code * [autoparallel] update binary elementwise handler (#2451) * [autoparallel] update binary elementwise handler * polish * [workflow] automated bdist wheel build (#2459) * [workflow] automated bdist wheel build * polish workflow * polish readme * polish readme * Fix False warning in initialize.py (#2456) * Update initialize.py * pre-commit run check * [examples] update autoparallel tutorial demo (#2449) * [examples] update autoparallel tutorial demo * add test_ci.sh * polish * add conda yaml * [cli] fixed hostname mismatch error (#2465) * [example] integrate autoparallel demo with CI (#2466) * [example] integrate autoparallel demo with CI * polish code * polish code * polish code * polish code * [zero] low level optim supports ProcessGroup (#2464) * [example] update vit ci script (#2469) * [example] update vit ci script * [example] update requirements * [example] update requirements * [example] integrate seq-parallel tutorial with CI (#2463) * [zero] polish low level optimizer (#2473) * polish pp middleware (#2476) Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com> * [example] update gpt gemini example ci test (#2477) * [zero] add unit test for low-level zero init (#2474) * [workflow] fixed the skip condition of example weekly check workflow (#2481) * [example] stable diffusion add roadmap * add dummy test_ci.sh * [example] stable diffusion add roadmap (#2482) * [CI] add test_ci.sh for palm, opt and gpt (#2475) * polish code * [example] titans for gpt * polish readme * remove license * polish code * update readme * [example] titans for gpt (#2484) * [autoparallel] support origin activation ckpt on autoprallel system (#2468) * [autochunk] support evoformer tracer (#2485) support full evoformer tracer, which is a main module of alphafold. previously we just support a simplifed version of it. 1. support some evoformer's op in fx 2. support evoformer test 3. add repos for test code * [example] fix requirements (#2488) * [zero] add unit testings for hybrid parallelism (#2486) * [hotfix] gpt example titans bug #2493 * polish code and fix dataloader bugs * [hotfix] gpt example titans bug #2493 (#2494) * [fx] allow control of ckpt_codegen init (#2498) * [fx] allow control of ckpt_codegen init Currently in ColoGraphModule, ActivationCheckpointCodeGen will be set automatically in __init__. But other codegen can't be set if so. So I add an arg to control whether to set ActivationCheckpointCodeGen in __init__. * code style * [example] dreambooth example * add test_ci.sh to dreambooth * [autochunk] support autochunk on evoformer (#2497) * Revert "Update parallel_context.py (#2408)" This reverts commit 7d5640b9db01b501e95b66e91be9fe27b58d2e58. * add avg partition (#2483) Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com> * [auto-chunk] support extramsa (#3) (#2504) * [utils] lazy init. (#2148) * [utils] lazy init. * [utils] remove description. * [utils] complete. * [utils] finalize. * [utils] fix names. * [autochunk] support parsing blocks (#2506) * [zero] add strict ddp mode (#2508) * [zero] add strict ddp mode * [polish] add comments for strict ddp mode * [zero] fix test error * [doc] update opt and tutorial links (#2509) * [workflow] fixed changed file detection (#2515) Co-authored-by: oahzxl <xuanlei.zhao@gmail.com> Co-authored-by: eric8607242 <e0928021388@gmail.com> Co-authored-by: HELSON <c2h214748@gmail.com> Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: Haofan Wang <haofanwang.ai@gmail.com> Co-authored-by: Jiarui Fang <fangjiarui123@gmail.com> Co-authored-by: ZijianYY <119492445+ZijianYY@users.noreply.github.com> Co-authored-by: YuliangLiu0306 <72588413+YuliangLiu0306@users.noreply.github.com> Co-authored-by: Super Daniel <78588128+super-dainiu@users.noreply.github.com> Co-authored-by: ver217 <lhx0217@gmail.com> Co-authored-by: Ziyue Jiang <ziyue.jiang97@gmail.com> Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com> Co-authored-by: oahzxl <43881818+oahzxl@users.noreply.github.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> Co-authored-by: Fazzie-Maqianli <55798671+Fazziekey@users.noreply.github.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
2 years ago
## Finetune Example (Work In Progress)
### Training on Teyvat Datasets
We provide the finetuning example on [Teyvat](https://huggingface.co/datasets/Fazzie/Teyvat) dataset, which is create by BLIP generated captions.
You can run by config `configs/Teyvat/train_colossalai_teyvat.yaml`
```
python main.py --logdir /tmp/ -t -b configs/Teyvat/train_colossalai_teyvat.yaml
```
## Inference
you can get yout training last.ckpt and train config.yaml in your `--logdir`, and run by
```
python scripts/txt2img.py --prompt "a photograph of an astronaut riding a horse" --plms
--outdir ./output \
--config path/to/logdir/checkpoints/last.ckpt \
--ckpt /path/to/logdir/configs/project.yaml \
```
```commandline
usage: txt2img.py [-h] [--prompt [PROMPT]] [--outdir [OUTDIR]] [--skip_grid] [--skip_save] [--ddim_steps DDIM_STEPS] [--plms] [--laion400m] [--fixed_code] [--ddim_eta DDIM_ETA]
[--n_iter N_ITER] [--H H] [--W W] [--C C] [--f F] [--n_samples N_SAMPLES] [--n_rows N_ROWS] [--scale SCALE] [--from-file FROM_FILE] [--config CONFIG] [--ckpt CKPT]
[--seed SEED] [--precision {full,autocast}]
optional arguments:
-h, --help show this help message and exit
--prompt [PROMPT] the prompt to render
--outdir [OUTDIR] dir to write results to
--skip_grid do not save a grid, only individual samples. Helpful when evaluating lots of samples
--skip_save do not save individual samples. For speed measurements.
--ddim_steps DDIM_STEPS
number of ddim sampling steps
--plms use plms sampling
--laion400m uses the LAION400M model
--fixed_code if enabled, uses the same starting code across samples
--ddim_eta DDIM_ETA ddim eta (eta=0.0 corresponds to deterministic sampling
--n_iter N_ITER sample this often
--H H image height, in pixel space
--W W image width, in pixel space
--C C latent channels
--f F downsampling factor
--n_samples N_SAMPLES
how many samples to produce for each given prompt. A.k.a. batch size
--n_rows N_ROWS rows in the grid (default: n_samples)
--scale SCALE unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))
--from-file FROM_FILE
if specified, load prompts from this file
--config CONFIG path to config which constructs model
--ckpt CKPT path to checkpoint of model
--seed SEED the seed (for reproducible sampling)
--use_int8 whether to use quantization method
--precision {full,autocast}
evaluate at this precision
```
## Comments
- Our codebase for the diffusion models builds heavily on [OpenAI's ADM codebase](https://github.com/openai/guided-diffusion)
, [lucidrains](https://github.com/lucidrains/denoising-diffusion-pytorch),
[Stable Diffusion](https://github.com/CompVis/stable-diffusion), [Lightning](https://github.com/Lightning-AI/lightning) and [Hugging Face](https://huggingface.co/CompVis/stable-diffusion).
Thanks for open-sourcing!
- The implementation of the transformer encoder is from [x-transformers](https://github.com/lucidrains/x-transformers) by [lucidrains](https://github.com/lucidrains?tab=repositories).
- The implementation of [flash attention](https://github.com/HazyResearch/flash-attention) is from [HazyResearch](https://github.com/HazyResearch).
## BibTeX
```
@article{bian2021colossal,
title={Colossal-AI: A Unified Deep Learning System For Large-Scale Parallel Training},
author={Bian, Zhengda and Liu, Hongxin and Wang, Boxiang and Huang, Haichen and Li, Yongbin and Wang, Chuanrui and Cui, Fan and You, Yang},
journal={arXiv preprint arXiv:2110.14883},
year={2021}
}
@misc{rombach2021highresolution,
title={High-Resolution Image Synthesis with Latent Diffusion Models},
author={Robin Rombach and Andreas Blattmann and Dominik Lorenz and Patrick Esser and Björn Ommer},
year={2021},
eprint={2112.10752},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@article{dao2022flashattention,
title={FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness},
author={Dao, Tri and Fu, Daniel Y. and Ermon, Stefano and Rudra, Atri and R{\'e}, Christopher},
journal={arXiv preprint arXiv:2205.14135},
year={2022}
}
```