Browse Source

[example] add cifar10 dadaset for diffusion (#1902)

* add cifar10 dadasets

* Update README.md

Co-authored-by: binmakeswell <binmakeswell@gmail.com>
pull/1905/head
Fazzie-Maqianli 2 years ago committed by GitHub
parent
commit
351f0f64e6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 20
      examples/images/diffusion/README.md
  2. 123
      examples/images/diffusion/configs/train_colossalai_cifar10.yaml
  3. 1
      examples/images/diffusion/environment.yaml
  4. 184
      examples/images/diffusion/ldm/data/cifar10.py
  5. 3
      examples/images/diffusion/requirements.txt

20
examples/images/diffusion/README.md

@ -54,14 +54,14 @@ pip install -r requirements.txt && pip install .
> The specified version is due to the interface incompatibility caused by the latest update of [Lightning](https://github.com/Lightning-AI/lightning), which will be fixed in the near future.
## Dataset
The DataSet is from [LAION-5B](https://laion.ai/blog/laion-5b/), the subset of [LAION](https://laion.ai/),
The dataSet is from [LAION-5B](https://laion.ai/blog/laion-5b/), the subset of [LAION](https://laion.ai/),
you should the change the `data.file_path` in the `config/train_colossalai.yaml`
## Training
we provide the script `train.sh` to run the training task , and two Stategy in `configs`:`train_colossalai.yaml`, `train_ddp.yaml`
We provide the script `train.sh` to run the training task , and two Stategy in `configs`:`train_colossalai.yaml`
for example, you can run the training from colossalai by
For example, you can run the training from colossalai by
```
python main.py --logdir /tmp -t --postfix test -b configs/train_colossalai.yaml
```
@ -69,13 +69,25 @@ python main.py --logdir /tmp -t --postfix test -b configs/train_colossalai.yaml
- you can change the `--logdir` the save the log information and the last checkpoint
### Training config
you can change the trainging config in the yaml file
You can change the trainging config in the yaml file
- accelerator: acceleratortype, default 'gpu'
- devices: device number used for training, default 4
- max_epochs: max training epochs
- precision: usefp16 for training or not, default 16, you must use fp16 if you want to apply colossalai
## Example
### Training on cifar10
We provide the finetuning example on CIFAR10 dataset
You can run by config `train_colossalai_cifar10.yaml`
```
python main.py --logdir /tmp -t --postfix test -b configs/train_colossalai_cifar10.yaml
```
## Comments

123
examples/images/diffusion/configs/train_colossalai_cifar10.yaml

@ -0,0 +1,123 @@
model:
base_learning_rate: 1.0e-04
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: image
cond_stage_key: txt
image_size: 64
channels: 4
cond_stage_trainable: false # Note: different from the one we trained before
conditioning_key: crossattn
monitor: val/loss_simple_ema
scale_factor: 0.18215
use_ema: False
scheduler_config: # 10000 warmup steps
target: ldm.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps: [ 1 ] # NOTE for resuming. use 10000 if starting from scratch
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
f_start: [ 1.e-6 ]
f_max: [ 1.e-4 ]
f_min: [ 1.e-10 ]
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32 # unused
from_pretrained: '/data/scratch/diffuser/stable-diffusion-v1-4/unet/diffusion_pytorch_model.bin'
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_heads: 8
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: False
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
from_pretrained: '/data/scratch/diffuser/stable-diffusion-v1-4/vae/diffusion_pytorch_model.bin'
monitor: val/rec_loss
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
params:
use_fp16: True
data:
target: main.DataModuleFromConfig
params:
batch_size: 4
num_workers: 4
train:
target: ldm.data.cifar10.hf_dataset
params:
name: cifar10
image_transforms:
- target: torchvision.transforms.Resize
params:
size: 512
interpolation: 3
- target: torchvision.transforms.RandomCrop
params:
size: 512
- target: torchvision.transforms.RandomHorizontalFlip
lightning:
trainer:
accelerator: 'gpu'
devices: 2
log_gpu_memory: all
max_epochs: 2
precision: 16
auto_select_gpus: False
strategy:
target: pytorch_lightning.strategies.ColossalAIStrategy
params:
use_chunk: False
enable_distributed_storage: True,
placement_policy: cuda
force_outputs_fp32: False
log_every_n_steps: 2
logger: True
default_root_dir: "/tmp/diff_log/"
profiler: pytorch
logger_config:
wandb:
target: pytorch_lightning.loggers.WandbLogger
params:
name: nowname
save_dir: "/tmp/diff_log/"
offline: opt.debug
id: nowname

1
examples/images/diffusion/environment.yaml

@ -11,6 +11,7 @@ dependencies:
- numpy=1.19.2
- pip:
- albumentations==0.4.3
- datasets
- diffusers
- opencv-python==4.6.0.66
- pudb==2019.2

184
examples/images/diffusion/ldm/data/cifar10.py

@ -0,0 +1,184 @@
from typing import Dict
import numpy as np
from omegaconf import DictConfig, ListConfig
import torch
from torch.utils.data import Dataset
from pathlib import Path
import json
from PIL import Image
from torchvision import transforms
from einops import rearrange
from ldm.util import instantiate_from_config
from datasets import load_dataset
def make_multi_folder_data(paths, caption_files=None, **kwargs):
"""Make a concat dataset from multiple folders
Don't suport captions yet
If paths is a list, that's ok, if it's a Dict interpret it as:
k=folder v=n_times to repeat that
"""
list_of_paths = []
if isinstance(paths, (Dict, DictConfig)):
assert caption_files is None, \
"Caption files not yet supported for repeats"
for folder_path, repeats in paths.items():
list_of_paths.extend([folder_path]*repeats)
paths = list_of_paths
if caption_files is not None:
datasets = [FolderData(p, caption_file=c, **kwargs) for (p, c) in zip(paths, caption_files)]
else:
datasets = [FolderData(p, **kwargs) for p in paths]
return torch.utils.data.ConcatDataset(datasets)
class FolderData(Dataset):
def __init__(self,
root_dir,
caption_file=None,
image_transforms=[],
ext="jpg",
default_caption="",
postprocess=None,
return_paths=False,
) -> None:
"""Create a dataset from a folder of images.
If you pass in a root directory it will be searched for images
ending in ext (ext can be a list)
"""
self.root_dir = Path(root_dir)
self.default_caption = default_caption
self.return_paths = return_paths
if isinstance(postprocess, DictConfig):
postprocess = instantiate_from_config(postprocess)
self.postprocess = postprocess
if caption_file is not None:
with open(caption_file, "rt") as f:
ext = Path(caption_file).suffix.lower()
if ext == ".json":
captions = json.load(f)
elif ext == ".jsonl":
lines = f.readlines()
lines = [json.loads(x) for x in lines]
captions = {x["file_name"]: x["text"].strip("\n") for x in lines}
else:
raise ValueError(f"Unrecognised format: {ext}")
self.captions = captions
else:
self.captions = None
if not isinstance(ext, (tuple, list, ListConfig)):
ext = [ext]
# Only used if there is no caption file
self.paths = []
for e in ext:
self.paths.extend(list(self.root_dir.rglob(f"*.{e}")))
if isinstance(image_transforms, ListConfig):
image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
image_transforms.extend([transforms.ToTensor(),
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
image_transforms = transforms.Compose(image_transforms)
self.tform = image_transforms
def __len__(self):
if self.captions is not None:
return len(self.captions.keys())
else:
return len(self.paths)
def __getitem__(self, index):
data = {}
if self.captions is not None:
chosen = list(self.captions.keys())[index]
caption = self.captions.get(chosen, None)
if caption is None:
caption = self.default_caption
filename = self.root_dir/chosen
else:
filename = self.paths[index]
if self.return_paths:
data["path"] = str(filename)
im = Image.open(filename)
im = self.process_im(im)
data["image"] = im
if self.captions is not None:
data["txt"] = caption
else:
data["txt"] = self.default_caption
if self.postprocess is not None:
data = self.postprocess(data)
return data
def process_im(self, im):
im = im.convert("RGB")
return self.tform(im)
def hf_dataset(
name,
image_transforms=[],
image_column="img",
label_column="label",
text_column="txt",
split='train',
image_key='image',
caption_key='txt',
):
"""Make huggingface dataset with appropriate list of transforms applied
"""
ds = load_dataset(name, split=split)
image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
image_transforms.extend([transforms.ToTensor(),
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
tform = transforms.Compose(image_transforms)
assert image_column in ds.column_names, f"Didn't find column {image_column} in {ds.column_names}"
assert label_column in ds.column_names, f"Didn't find column {label_column} in {ds.column_names}"
def pre_process(examples):
processed = {}
processed[image_key] = [tform(im) for im in examples[image_column]]
label_to_text_dict = {0: "airplane", 1: "automobile", 2: "bird", 3: "cat", 4: "deer", 5: "dog", 6: "frog", 7: "horse", 8: "ship", 9: "truck"}
processed[caption_key] = [label_to_text_dict[label] for label in examples[label_column]]
return processed
ds.set_transform(pre_process)
return ds
class TextOnly(Dataset):
def __init__(self, captions, output_size, image_key="image", caption_key="txt", n_gpus=1):
"""Returns only captions with dummy images"""
self.output_size = output_size
self.image_key = image_key
self.caption_key = caption_key
if isinstance(captions, Path):
self.captions = self._load_caption_file(captions)
else:
self.captions = captions
if n_gpus > 1:
# hack to make sure that all the captions appear on each gpu
repeated = [n_gpus*[x] for x in self.captions]
self.captions = []
[self.captions.extend(x) for x in repeated]
def __len__(self):
return len(self.captions)
def __getitem__(self, index):
dummy_im = torch.zeros(3, self.output_size, self.output_size)
dummy_im = rearrange(dummy_im * 2. - 1., 'c h w -> h w c')
return {self.image_key: dummy_im, self.caption_key: self.captions[index]}
def _load_caption_file(self, filename):
with open(filename, 'rt') as f:
captions = f.readlines()
return [x.strip('\n') for x in captions]

3
examples/images/diffusion/requirements.txt

@ -1,11 +1,12 @@
albumentations==0.4.3
diffusers
opencv-python==4.1.2.30
pudb==2019.2
datasets
invisible-watermark
imageio==2.9.0
imageio-ffmpeg==0.4.2
omegaconf==2.1.1
multiprocess
test-tube>=0.7.5
streamlit>=0.73.1
einops==0.3.0

Loading…
Cancel
Save