mirror of https://github.com/hpcaitech/ColossalAI
[example] add diffusion inference (#1986)
parent
a01278e810
commit
b5dbb46172
|
@ -96,9 +96,53 @@ We provide the finetuning example on CIFAR10 dataset
|
|||
|
||||
You can run by config `train_colossalai_cifar10.yaml`
|
||||
```
|
||||
python main.py --logdir /tmp -t --postfix test -b configs/train_colossalai_cifar10.yaml
|
||||
python main.py --logdir /tmp -t --postfix test -b configs/train_colossalai_cifar10.yaml
|
||||
```
|
||||
|
||||
## Inference
|
||||
you can get yout training last.ckpt and train config.yaml in your `--logdir`, and run by
|
||||
```
|
||||
python scripts/txt2img.py --prompt "a photograph of an astronaut riding a horse" --plms
|
||||
--outdir ./output \
|
||||
--config path/to/logdir/checkpoints/last.ckpt \
|
||||
--ckpt /path/to/logdir/configs/project.yaml \
|
||||
```
|
||||
|
||||
|
||||
```commandline
|
||||
usage: txt2img.py [-h] [--prompt [PROMPT]] [--outdir [OUTDIR]] [--skip_grid] [--skip_save] [--ddim_steps DDIM_STEPS] [--plms] [--laion400m] [--fixed_code] [--ddim_eta DDIM_ETA]
|
||||
[--n_iter N_ITER] [--H H] [--W W] [--C C] [--f F] [--n_samples N_SAMPLES] [--n_rows N_ROWS] [--scale SCALE] [--from-file FROM_FILE] [--config CONFIG] [--ckpt CKPT]
|
||||
[--seed SEED] [--precision {full,autocast}]
|
||||
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
--prompt [PROMPT] the prompt to render
|
||||
--outdir [OUTDIR] dir to write results to
|
||||
--skip_grid do not save a grid, only individual samples. Helpful when evaluating lots of samples
|
||||
--skip_save do not save individual samples. For speed measurements.
|
||||
--ddim_steps DDIM_STEPS
|
||||
number of ddim sampling steps
|
||||
--plms use plms sampling
|
||||
--laion400m uses the LAION400M model
|
||||
--fixed_code if enabled, uses the same starting code across samples
|
||||
--ddim_eta DDIM_ETA ddim eta (eta=0.0 corresponds to deterministic sampling
|
||||
--n_iter N_ITER sample this often
|
||||
--H H image height, in pixel space
|
||||
--W W image width, in pixel space
|
||||
--C C latent channels
|
||||
--f F downsampling factor
|
||||
--n_samples N_SAMPLES
|
||||
how many samples to produce for each given prompt. A.k.a. batch size
|
||||
--n_rows N_ROWS rows in the grid (default: n_samples)
|
||||
--scale SCALE unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))
|
||||
--from-file FROM_FILE
|
||||
if specified, load prompts from this file
|
||||
--config CONFIG path to config which constructs model
|
||||
--ckpt CKPT path to checkpoint of model
|
||||
--seed SEED the seed (for reproducible sampling)
|
||||
--precision {full,autocast}
|
||||
evaluate at this precision
|
||||
```
|
||||
|
||||
|
||||
## Comments
|
||||
|
|
|
@ -0,0 +1,122 @@
|
|||
model:
|
||||
base_learning_rate: 1.0e-04
|
||||
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
||||
params:
|
||||
linear_start: 0.00085
|
||||
linear_end: 0.0120
|
||||
num_timesteps_cond: 1
|
||||
log_every_t: 200
|
||||
timesteps: 1000
|
||||
first_stage_key: image
|
||||
cond_stage_key: txt
|
||||
image_size: 64
|
||||
channels: 4
|
||||
cond_stage_trainable: false # Note: different from the one we trained before
|
||||
conditioning_key: crossattn
|
||||
monitor: val/loss_simple_ema
|
||||
scale_factor: 0.18215
|
||||
use_ema: False
|
||||
|
||||
scheduler_config: # 10000 warmup steps
|
||||
target: ldm.lr_scheduler.LambdaLinearScheduler
|
||||
params:
|
||||
warm_up_steps: [ 1 ] # NOTE for resuming. use 10000 if starting from scratch
|
||||
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
||||
f_start: [ 1.e-6 ]
|
||||
f_max: [ 1.e-4 ]
|
||||
f_min: [ 1.e-10 ]
|
||||
|
||||
unet_config:
|
||||
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||
params:
|
||||
image_size: 32 # unused
|
||||
from_pretrained: '/data/scratch/diffuser/stable-diffusion-v1-4/unet/diffusion_pytorch_model.bin'
|
||||
in_channels: 4
|
||||
out_channels: 4
|
||||
model_channels: 320
|
||||
attention_resolutions: [ 4, 2, 1 ]
|
||||
num_res_blocks: 2
|
||||
channel_mult: [ 1, 2, 4, 4 ]
|
||||
num_heads: 8
|
||||
use_spatial_transformer: True
|
||||
transformer_depth: 1
|
||||
context_dim: 768
|
||||
use_checkpoint: False
|
||||
legacy: False
|
||||
|
||||
first_stage_config:
|
||||
target: ldm.models.autoencoder.AutoencoderKL
|
||||
params:
|
||||
embed_dim: 4
|
||||
from_pretrained: '/data/scratch/diffuser/stable-diffusion-v1-4/vae/diffusion_pytorch_model.bin'
|
||||
monitor: val/rec_loss
|
||||
ddconfig:
|
||||
double_z: true
|
||||
z_channels: 4
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult:
|
||||
- 1
|
||||
- 2
|
||||
- 4
|
||||
- 4
|
||||
num_res_blocks: 2
|
||||
attn_resolutions: []
|
||||
dropout: 0.0
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
|
||||
cond_stage_config:
|
||||
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
||||
params:
|
||||
use_fp16: True
|
||||
|
||||
data:
|
||||
target: main.DataModuleFromConfig
|
||||
params:
|
||||
batch_size: 16
|
||||
num_workers: 4
|
||||
train:
|
||||
target: ldm.data.teyvat.hf_dataset
|
||||
params:
|
||||
path: Fazzie/Teyvat
|
||||
image_transforms:
|
||||
- target: torchvision.transforms.Resize
|
||||
params:
|
||||
size: 512
|
||||
# - target: torchvision.transforms.RandomCrop
|
||||
# params:
|
||||
# size: 256
|
||||
# - target: torchvision.transforms.RandomHorizontalFlip
|
||||
|
||||
lightning:
|
||||
trainer:
|
||||
accelerator: 'gpu'
|
||||
devices: 2
|
||||
log_gpu_memory: all
|
||||
max_epochs: 10
|
||||
precision: 16
|
||||
auto_select_gpus: False
|
||||
strategy:
|
||||
target: lightning.pytorch.strategies.ColossalAIStrategy
|
||||
params:
|
||||
use_chunk: False
|
||||
enable_distributed_storage: True,
|
||||
placement_policy: cuda
|
||||
force_outputs_fp32: False
|
||||
|
||||
log_every_n_steps: 2
|
||||
logger: True
|
||||
default_root_dir: "/tmp/diff_log/"
|
||||
profiler: pytorch
|
||||
|
||||
logger_config:
|
||||
wandb:
|
||||
target: lightning.pytorch.loggers.WandbLogger
|
||||
params:
|
||||
name: nowname
|
||||
save_dir: "/tmp/diff_log/"
|
||||
offline: opt.debug
|
||||
id: nowname
|
|
@ -0,0 +1,152 @@
|
|||
from typing import Dict
|
||||
import numpy as np
|
||||
from omegaconf import DictConfig, ListConfig
|
||||
import torch
|
||||
from torch.utils.data import Dataset
|
||||
from pathlib import Path
|
||||
import json
|
||||
from PIL import Image
|
||||
from torchvision import transforms
|
||||
from einops import rearrange
|
||||
from ldm.util import instantiate_from_config
|
||||
from datasets import load_dataset
|
||||
|
||||
def make_multi_folder_data(paths, caption_files=None, **kwargs):
|
||||
"""Make a concat dataset from multiple folders
|
||||
Don't suport captions yet
|
||||
If paths is a list, that's ok, if it's a Dict interpret it as:
|
||||
k=folder v=n_times to repeat that
|
||||
"""
|
||||
list_of_paths = []
|
||||
if isinstance(paths, (Dict, DictConfig)):
|
||||
assert caption_files is None, \
|
||||
"Caption files not yet supported for repeats"
|
||||
for folder_path, repeats in paths.items():
|
||||
list_of_paths.extend([folder_path]*repeats)
|
||||
paths = list_of_paths
|
||||
|
||||
if caption_files is not None:
|
||||
datasets = [FolderData(p, caption_file=c, **kwargs) for (p, c) in zip(paths, caption_files)]
|
||||
else:
|
||||
datasets = [FolderData(p, **kwargs) for p in paths]
|
||||
return torch.utils.data.ConcatDataset(datasets)
|
||||
|
||||
class FolderData(Dataset):
|
||||
def __init__(self,
|
||||
root_dir,
|
||||
caption_file=None,
|
||||
image_transforms=[],
|
||||
ext="jpg",
|
||||
default_caption="",
|
||||
postprocess=None,
|
||||
return_paths=False,
|
||||
) -> None:
|
||||
"""Create a dataset from a folder of images.
|
||||
If you pass in a root directory it will be searched for images
|
||||
ending in ext (ext can be a list)
|
||||
"""
|
||||
self.root_dir = Path(root_dir)
|
||||
self.default_caption = default_caption
|
||||
self.return_paths = return_paths
|
||||
if isinstance(postprocess, DictConfig):
|
||||
postprocess = instantiate_from_config(postprocess)
|
||||
self.postprocess = postprocess
|
||||
if caption_file is not None:
|
||||
with open(caption_file, "rt") as f:
|
||||
ext = Path(caption_file).suffix.lower()
|
||||
if ext == ".json":
|
||||
captions = json.load(f)
|
||||
elif ext == ".jsonl":
|
||||
lines = f.readlines()
|
||||
lines = [json.loads(x) for x in lines]
|
||||
captions = {x["file_name"]: x["text"].strip("\n") for x in lines}
|
||||
else:
|
||||
raise ValueError(f"Unrecognised format: {ext}")
|
||||
self.captions = captions
|
||||
else:
|
||||
self.captions = None
|
||||
|
||||
if not isinstance(ext, (tuple, list, ListConfig)):
|
||||
ext = [ext]
|
||||
|
||||
# Only used if there is no caption file
|
||||
self.paths = []
|
||||
for e in ext:
|
||||
self.paths.extend(list(self.root_dir.rglob(f"*.{e}")))
|
||||
if isinstance(image_transforms, ListConfig):
|
||||
image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
|
||||
image_transforms.extend([transforms.ToTensor(),
|
||||
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
|
||||
image_transforms = transforms.Compose(image_transforms)
|
||||
self.tform = image_transforms
|
||||
|
||||
|
||||
def __len__(self):
|
||||
if self.captions is not None:
|
||||
return len(self.captions.keys())
|
||||
else:
|
||||
return len(self.paths)
|
||||
|
||||
def __getitem__(self, index):
|
||||
data = {}
|
||||
if self.captions is not None:
|
||||
chosen = list(self.captions.keys())[index]
|
||||
caption = self.captions.get(chosen, None)
|
||||
if caption is None:
|
||||
caption = self.default_caption
|
||||
filename = self.root_dir/chosen
|
||||
else:
|
||||
filename = self.paths[index]
|
||||
|
||||
if self.return_paths:
|
||||
data["path"] = str(filename)
|
||||
|
||||
im = Image.open(filename)
|
||||
im = self.process_im(im)
|
||||
data["image"] = im
|
||||
|
||||
if self.captions is not None:
|
||||
data["txt"] = caption
|
||||
else:
|
||||
data["txt"] = self.default_caption
|
||||
|
||||
if self.postprocess is not None:
|
||||
data = self.postprocess(data)
|
||||
|
||||
return data
|
||||
|
||||
def process_im(self, im):
|
||||
im = im.convert("RGB")
|
||||
return self.tform(im)
|
||||
|
||||
def hf_dataset(
|
||||
path = "Fazzie/Teyvat",
|
||||
image_transforms=[],
|
||||
image_column="image",
|
||||
text_column="text",
|
||||
image_key='image',
|
||||
caption_key='txt',
|
||||
):
|
||||
"""Make huggingface dataset with appropriate list of transforms applied
|
||||
"""
|
||||
ds = load_dataset(path, name="train")
|
||||
ds = ds["train"]
|
||||
image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
|
||||
image_transforms.extend([transforms.Resize((256, 256)),
|
||||
transforms.ToTensor(),
|
||||
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))]
|
||||
)
|
||||
tform = transforms.Compose(image_transforms)
|
||||
|
||||
assert image_column in ds.column_names, f"Didn't find column {image_column} in {ds.column_names}"
|
||||
assert text_column in ds.column_names, f"Didn't find column {text_column} in {ds.column_names}"
|
||||
|
||||
def pre_process(examples):
|
||||
processed = {}
|
||||
processed[image_key] = [tform(im) for im in examples[image_column]]
|
||||
processed[caption_key] = examples[text_column]
|
||||
|
||||
return processed
|
||||
|
||||
ds.set_transform(pre_process)
|
||||
return ds
|
|
@ -99,12 +99,12 @@ class DDPM(pl.LightningModule):
|
|||
self.use_positional_encodings = use_positional_encodings
|
||||
self.unet_config = unet_config
|
||||
self.conditioning_key = conditioning_key
|
||||
# self.model = DiffusionWrapper(unet_config, conditioning_key)
|
||||
# count_params(self.model, verbose=True)
|
||||
self.model = DiffusionWrapper(unet_config, conditioning_key)
|
||||
count_params(self.model, verbose=True)
|
||||
self.use_ema = use_ema
|
||||
# if self.use_ema:
|
||||
# self.model_ema = LitEma(self.model)
|
||||
# print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
||||
if self.use_ema:
|
||||
self.model_ema = LitEma(self.model)
|
||||
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
||||
|
||||
self.use_scheduler = scheduler_config is not None
|
||||
if self.use_scheduler:
|
||||
|
@ -125,20 +125,20 @@ class DDPM(pl.LightningModule):
|
|||
self.linear_start = linear_start
|
||||
self.linear_end = linear_end
|
||||
self.cosine_s = cosine_s
|
||||
# if ckpt_path is not None:
|
||||
# self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
|
||||
#
|
||||
# self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
|
||||
# linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
|
||||
if ckpt_path is not None:
|
||||
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
|
||||
|
||||
self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
|
||||
linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
|
||||
|
||||
self.loss_type = loss_type
|
||||
|
||||
self.learn_logvar = learn_logvar
|
||||
self.logvar_init = logvar_init
|
||||
# self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
|
||||
# if self.learn_logvar:
|
||||
# self.logvar = nn.Parameter(self.logvar, requires_grad=True)
|
||||
# self.logvar = nn.Parameter(self.logvar, requires_grad=True)
|
||||
self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
|
||||
if self.learn_logvar:
|
||||
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
|
||||
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
|
||||
|
||||
self.use_fp16 = use_fp16
|
||||
if use_fp16:
|
||||
|
@ -312,14 +312,6 @@ class DDPM(pl.LightningModule):
|
|||
|
||||
def get_loss(self, pred, target, mean=True):
|
||||
|
||||
if pred.isnan().any():
|
||||
print("Warning: Prediction has nan values")
|
||||
lr = self.optimizers().param_groups[0]['lr']
|
||||
# self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
|
||||
print(f"lr: {lr}")
|
||||
if pred.isinf().any():
|
||||
print("Warning: Prediction has inf values")
|
||||
|
||||
if self.use_fp16:
|
||||
target = target.half()
|
||||
|
||||
|
@ -334,15 +326,6 @@ class DDPM(pl.LightningModule):
|
|||
loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
|
||||
else:
|
||||
raise NotImplementedError("unknown loss type '{loss_type}'")
|
||||
|
||||
if loss.isnan().any():
|
||||
print("Warning: loss has nan values")
|
||||
print("loss: ", loss[0][0][0])
|
||||
raise ValueError("loss has nan values")
|
||||
if loss.isinf().any():
|
||||
print("Warning: loss has inf values")
|
||||
print("loss: ", loss)
|
||||
raise ValueError("loss has inf values")
|
||||
|
||||
return loss
|
||||
|
||||
|
@ -382,11 +365,7 @@ class DDPM(pl.LightningModule):
|
|||
return self.p_losses(x, t, *args, **kwargs)
|
||||
|
||||
def get_input(self, batch, k):
|
||||
# print("+" * 30)
|
||||
# print(batch['jpg'].shape)
|
||||
# print(len(batch['txt']))
|
||||
# print(k)
|
||||
# print("=" * 30)
|
||||
|
||||
if not isinstance(batch, torch.Tensor):
|
||||
x = batch[k]
|
||||
else:
|
||||
|
@ -534,8 +513,8 @@ class LatentDiffusion(DDPM):
|
|||
else:
|
||||
self.cond_stage_config["params"].update({"use_fp16": False})
|
||||
rank_zero_info("Using fp16 for conditioning stage = {}".format(self.cond_stage_config["params"]["use_fp16"]))
|
||||
# self.instantiate_first_stage(first_stage_config)
|
||||
# self.instantiate_cond_stage(cond_stage_config)
|
||||
self.instantiate_first_stage(first_stage_config)
|
||||
self.instantiate_cond_stage(cond_stage_config)
|
||||
self.cond_stage_forward = cond_stage_forward
|
||||
self.clip_denoised = False
|
||||
self.bbox_tokenizer = None
|
||||
|
@ -561,16 +540,11 @@ class LatentDiffusion(DDPM):
|
|||
self.logvar = torch.full(fill_value=self.logvar_init, size=(self.num_timesteps,))
|
||||
if self.learn_logvar:
|
||||
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
|
||||
# self.logvar = nn.Parameter(self.logvar, requires_grad=True)
|
||||
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
|
||||
if self.ckpt_path is not None:
|
||||
self.init_from_ckpt(self.ckpt_path, self.ignore_keys)
|
||||
self.restarted_from_ckpt = True
|
||||
|
||||
# TODO()
|
||||
# for p in self.model.modules():
|
||||
# if not p.parameters().data.is_contiguous:
|
||||
# p.data = p.data.contiguous()
|
||||
|
||||
self.instantiate_first_stage(self.first_stage_config)
|
||||
self.instantiate_cond_stage(self.cond_stage_config)
|
||||
|
||||
|
|
|
@ -0,0 +1,6 @@
|
|||
python scripts/txt2img.py --prompt "Teyvat, Name:Layla, Element: Cryo, Weapon:Sword, Region:Sumeru, Model type:Medium Female, Description:a woman in a blue outfit holding a sword" --plms \
|
||||
--outdir ./output \
|
||||
--config /home/lcmql/data2/Genshin/2022-11-18T16-38-46_train_colossalai_teyvattest/checkpoints/last.ckpt \
|
||||
--ckpt /home/lcmql/data2/Genshin/2022-11-18T16-38-46_train_colossalai_teyvattest/configs/2022-11-18T16-38-46-project.yaml \
|
||||
--n_samples 4
|
||||
|
Loading…
Reference in New Issue