2023-06-19 09:57:37 +00:00
|
|
|
from typing import Any, List, OrderedDict
|
2023-05-10 04:17:02 +00:00
|
|
|
|
2022-03-16 09:20:05 +00:00
|
|
|
import torch
|
|
|
|
import torch.distributed as dist
|
|
|
|
from torch import Tensor
|
|
|
|
from torch.distributed import ProcessGroup
|
2023-01-04 03:59:56 +00:00
|
|
|
from torch.testing import assert_close
|
2023-07-07 08:33:06 +00:00
|
|
|
from torch.utils._pytree import tree_flatten
|
2022-03-16 09:20:05 +00:00
|
|
|
|
|
|
|
|
|
|
|
def assert_equal(a: Tensor, b: Tensor):
|
2023-09-19 06:20:26 +00:00
|
|
|
assert torch.all(a == b), f"expected a and b to be equal but they are not, {a} vs {b}"
|
2022-03-16 09:20:05 +00:00
|
|
|
|
2022-09-08 07:25:06 +00:00
|
|
|
|
2022-03-16 09:20:05 +00:00
|
|
|
def assert_not_equal(a: Tensor, b: Tensor):
|
2023-09-19 06:20:26 +00:00
|
|
|
assert not torch.all(a == b), f"expected a and b to be not equal but they are, {a} vs {b}"
|
2022-03-16 09:20:05 +00:00
|
|
|
|
2022-09-08 07:25:06 +00:00
|
|
|
|
2022-03-17 06:40:52 +00:00
|
|
|
def assert_close_loose(a: Tensor, b: Tensor, rtol: float = 1e-3, atol: float = 1e-3):
|
2023-09-19 06:20:26 +00:00
|
|
|
assert_close(
|
|
|
|
a,
|
|
|
|
b,
|
|
|
|
rtol=rtol,
|
|
|
|
atol=atol,
|
|
|
|
msg=f"Tensor not close, shape: {a.shape} vs {b.shape}, \
|
[shardformer] refactor embedding resize (#5603)
* [branch rebase] rebase main to Feature/resize_embedding (#5554)
* fix
* [release] update version (#5411)
* [hotfix] fix typo s/keywrods/keywords etc. (#5429)
* [devops] fix compatibility (#5444)
* [devops] fix compatibility
* [hotfix] update compatibility test on pr
* [devops] fix compatibility
* [devops] record duration during comp test
* [test] decrease test duration
* fix falcon
* [shardformer] fix gathering output when using tensor parallelism (#5431)
* fix
* padding vocab_size when using pipeline parallellism
padding vocab_size when using pipeline parallellism
fix
fix
* fix
* fix
fix
fix
* fix gather output
* fix
* fix
* fix
fix resize embedding
fix resize embedding
* fix resize embedding
fix
* revert
* revert
* revert
* [doc] release Open-Sora 1.0 with model weights (#5468)
* [doc] release Open-Sora 1.0 with model weights
* [doc] release Open-Sora 1.0 with model weights
* [doc] release Open-Sora 1.0 with model weights
* [doc] update open-sora demo (#5479)
* [doc] update open-sora demo
* [doc] update open-sora demo
* [doc] update open-sora demo
* [example] add grok-1 inference (#5485)
* [misc] add submodule
* remove submodule
* [example] support grok-1 tp inference
* [example] add grok-1 inference script
* [example] refactor code
* [example] add grok-1 readme
* [exmaple] add test ci
* [exmaple] update readme
---------
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: digger yu <digger-yu@outlook.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* [CI] run pre-commit (#5577)
* fix
* [release] update version (#5411)
* [hotfix] fix typo s/keywrods/keywords etc. (#5429)
* [devops] fix compatibility (#5444)
* [devops] fix compatibility
* [hotfix] update compatibility test on pr
* [devops] fix compatibility
* [devops] record duration during comp test
* [test] decrease test duration
* fix falcon
* [shardformer] fix gathering output when using tensor parallelism (#5431)
* fix
* padding vocab_size when using pipeline parallellism
padding vocab_size when using pipeline parallellism
fix
fix
* fix
* fix
fix
fix
* fix gather output
* fix
* fix
* fix
fix resize embedding
fix resize embedding
* fix resize embedding
fix
* revert
* revert
* revert
* [doc] release Open-Sora 1.0 with model weights (#5468)
* [doc] release Open-Sora 1.0 with model weights
* [doc] release Open-Sora 1.0 with model weights
* [doc] release Open-Sora 1.0 with model weights
* [doc] update open-sora demo (#5479)
* [doc] update open-sora demo
* [doc] update open-sora demo
* [doc] update open-sora demo
* [example] add grok-1 inference (#5485)
* [misc] add submodule
* remove submodule
* [example] support grok-1 tp inference
* [example] add grok-1 inference script
* [example] refactor code
* [example] add grok-1 readme
* [exmaple] add test ci
* [exmaple] update readme
* run pre-commit
---------
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: digger yu <digger-yu@outlook.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* [rebase] rebase main to resize-embedding (#5581)
* [release] grok-1 314b inference (#5490)
* [release] grok-1 inference
* [release] grok-1 inference
* [release] grok-1 inference
* [example] update Grok-1 inference (#5495)
* revise grok-1 example
* remove unused arg in scripts
* prevent re-installing torch
* update readme
* revert modifying colossalai requirements
* add perf
* trivial
* add tokenizer url
* [hotfix] set return_outputs=False in examples and polish code (#5404)
* fix: simplify merge_batch
* fix: use return_outputs=False to eliminate extra memory consumption
* feat: add return_outputs warning
* style: remove `return_outputs=False` as it is the default value
* [release] grok-1 inference benchmark (#5500)
* [release] grok-1 inference benchmark
* [release] grok-1 inference benchmark
* [release] grok-1 inference benchmark
* [release] grok-1 inference benchmark
* [release] grok-1 inference benchmark
* [shardformer]Fix lm parallel. (#5480)
* fix
* padding vocab_size when using pipeline parallellism
padding vocab_size when using pipeline parallellism
fix
fix
* fix
* fix
fix
fix
* fix gather output
* fix
* fix
* fix
fix resize embedding
fix resize embedding
* fix resize embedding
fix
* revert
* revert
* revert
* fix lm forward distribution
* fix
* test ci
* fix
* [fix] fix grok-1 example typo (#5506)
* [devops] fix example test ci (#5504)
* Fix ColoTensorSpec for py11 (#5440)
* fixed layout converter caching and updated tester
* Empty-Commit
* [shardformer] update colo attention to support custom mask (#5510)
* [feature] refactor colo attention (#5462)
* [extension] update api
* [feature] add colo attention
* [feature] update sdpa
* [feature] update npu attention
* [feature] update flash-attn
* [test] add flash attn test
* [test] update flash attn test
* [shardformer] update modeling to fit colo attention (#5465)
* [misc] refactor folder structure
* [shardformer] update llama flash-attn
* [shardformer] fix llama policy
* [devops] update tensornvme install
* [test] update llama test
* [shardformer] update colo attn kernel dispatch
* [shardformer] update blip2
* [shardformer] update chatglm
* [shardformer] update gpt2
* [shardformer] update gptj
* [shardformer] update opt
* [shardformer] update vit
* [shardformer] update colo attention mask prep
* [shardformer] update whisper
* [test] fix shardformer tests (#5514)
* [test] fix shardformer tests
* [test] fix shardformer tests
* [format] applied code formatting on changed files in pull request 5510 (#5517)
Co-authored-by: github-actions <github-actions@github.com>
* [shardformer] fix pipeline forward error if custom layer distribution is used (#5189)
* Use self.[distribute_layers|get_stage_index] to exploit custom layer distribution
* Change static methods for t5 layer distribution to member functions
* Change static methods for whisper layer distribution to member functions
* Replace whisper policy usage with self one
* Fix test case to use non-static layer distribution methods
* fix: fix typo
---------
Co-authored-by: Wenhao Chen <cwher@outlook.com>
* [Fix] Grok-1 use tokenizer from the same pretrained path (#5532)
* [fix] use tokenizer from the same pretrained path
* trust remote code
* [ColossalChat] Update RLHF V2 (#5286)
* Add dpo. Fix sft, ppo, lora. Refactor all
* fix and tested ppo
* 2 nd round refactor
* add ci tests
* fix ci
* fix ci
* fix readme, style
* fix readme style
* fix style, fix benchmark
* reproduce benchmark result, remove useless files
* rename to ColossalChat
* use new image
* fix ci workflow
* fix ci
* use local model/tokenizer for ci tests
* fix ci
* fix ci
* fix ci
* fix ci timeout
* fix rm progress bar. fix ci timeout
* fix ci
* fix ci typo
* remove 3d plugin from ci temporary
* test environment
* cannot save optimizer
* support chat template
* fix readme
* fix path
* test ci locally
* restore build_or_pr
* fix ci data path
* fix benchmark
* fix ci, move ci tests to 3080, disable fast tokenizer
* move ci to 85
* support flash attention 2
* add all-in-one data preparation script. Fix colossal-llama2-chat chat template
* add hardware requirements
* move ci test data
* fix save_model, add unwrap
* fix missing bos
* fix missing bos; support grad accumulation with gemini
* fix ci
* fix ci
* fix ci
* fix llama2 chat template config
* debug sft
* debug sft
* fix colossalai version requirement
* fix ci
* add sanity check to prevent NaN loss
* fix requirements
* add dummy data generation script
* add dummy data generation script
* add dummy data generation script
* add dummy data generation script
* update readme
* update readme
* update readme and ignore
* fix logger bug
* support parallel_output
* modify data preparation logic
* fix tokenization
* update lr
* fix inference
* run pre-commit
---------
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
* [shardformer, pipeline] add `gradient_checkpointing_ratio` and heterogenous shard policy for llama (#5508)
* feat: add `GradientCheckpointConfig` and `PipelineGradientCheckpointConfig`
* feat: apply `GradientCheckpointConfig` to policy and llama_forward
* feat: move `distribute_layer` and `get_stage_index` to PipelineStageManager
* fix: add optional args for `distribute_layer` and `get_stage_index`
* fix: fix changed API calls
* test: update llama tests
* style: polish `GradientCheckpointConfig`
* fix: fix pipeline utils tests
* fix incorrect sharding without zero (#5545)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [shardformer] Sequence Parallelism Optimization (#5533)
* sequence parallel optimization
* validate sequence parallel in llama (code to be polished)
* shardformer api writing
* integrate sequence parallel in ShardFormer
* fix pp bugs and sp bugs for LlaMa model
* integrating ring-based sequence parallelism into ShardFormer
* [sequence parallelism]: Add fused megatron function
* integrating ring-based sequence parallelism into ShardFormer
---------
Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn>
* fix bugs when useing sp and flashattention together
* fix operation function name
* support flash attention for ulysses-style sp
* clarify sp process group
* fix compatibility bugs in moe plugin
* fix fused linear bugs
* fix linear layer test
* support gpt model all-to-all sp
* modify shard data dimension (meant to be dim=-1)
* support megtron-style sp and distributed attn for llama model
* [shardformer] add megatron sp to llama
* support llama7B 128k with distributed attention
* [shardformer] robustness enhancement
* add block attn
* sp mode 1: keep input as a complete sequence
* fix sp compatability
* finish sp mode 3 support for gpt
* using all_to_all_single when batch size is 1
* support mode 2 sp in gpt2 (#5)
* [shardformer] add megatron sp to llama
* support llama7B 128k with distributed attention
* [shardformer] robustness enhancement
* add block attn
* sp mode 1: keep input as a complete sequence
* fix sp compatability
* refactor ring implementation
* support mode 2 sp in gpt2
* polish code
* enable distributed attn mask when using sp mode 2 and 3 in llama
* automatically enable flash attn when using sp mode 2 and 3 in llama
* inplace attn mask
* add zero2 support for sequence parallel
* polish code
* fix bugs
* fix gemini checkpoint io
* loose tensor checking atol and rtol
* add comment
* fix llama layernorm grad
* fix zero grad
* fix zero grad
* fix conflict
* update split and gather auto grad func
* sequence parallel: inside text split (#6)
* polish code (part 1)
* polish code (part 2)
* polish code (part 2.5)
* polish code (part 3)
* sequence parallel: inside text split
* miscellaneous minor fixes
* polish code
* fix ulysses style ZeRO
* sequence parallel: inside text split
* miscellaneous minor fixes
* disaggregate sp group and dp group for sp
* fix llama and gpt sp
* polish code
* move ulysses grad sync to ddp (#9)
* remove zero_stage and unbind the grad sync for alltoall sp
* add 2d group creation test
* move ulysses grad sync to ddp
* add 2d group creation test
* remove useless code
* change shard config not to enable sp when enable_all_optimizations
* add sp warnings for several model
* remove useless code
---------
Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn>
* [hotfix] quick fixes to make legacy tutorials runnable (#5559)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [fix] fix typo s/muiti-node /multi-node etc. (#5448)
* [hotfix] fix typo s/get_defualt_parser /get_default_parser (#5548)
* [devops] remove post commit ci (#5566)
* [devops] remove post commit ci
* [misc] run pre-commit on all files
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
---------
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com>
Co-authored-by: Wenhao Chen <cwher@outlook.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: Rocky Duan <dementrock@users.noreply.github.com>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions <github-actions@github.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: Zhongkai Zhao <kanezz620@gmail.com>
Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn>
Co-authored-by: digger yu <digger-yu@outlook.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [shardformer]enable padding vocabulary size. (#5489)
* padding vocab_size when using pipeline parallellism
padding vocab_size when using pipeline parallellism
fix
fix
* fix
* fix
fix
fix
* fix gather output
* fix
* fix
* fix
fix resize embedding
fix resize embedding
* fix resize embedding
fix
* revert
* revert
* revert
* padding vocab
* padding vocabe
* fix
* fix
* fxi
* test ci
* fix
fix
fix
fix
* fix
fix
* fix
* fix
* Update hybrid_parallel_plugin.py
fix
fix
fix
* fix
fix
* fix
fix
* fix
* resolve super init
resolve super init
resolve super init
resolve super init
* resolve comments
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* vocab checkpointio
* padding vocab_size when using pipeline parallellism
padding vocab_size when using pipeline parallellism
fix
fix
* fix
fix
fix
* fix
* fix
fix resize embedding
fix resize embedding
* fix resize embedding
fix
* revert
* revert
* padding vocab
* fix
* fix
fix
* fix
fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix ci
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* cherry-pick
* revert moe modify
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
fix
fix
fix
fix
fix
fix
fix
* resolve comments
resolve comments
resolve comments
resolve comments
resolve comments
* ptensor
ptensor
resolve comments
fix
fix
fix
fix
fix
resolve comments
resolve comments
resolve comments
resolve comments
resolve comments
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix rebase
* fix rebase
---------
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: digger yu <digger-yu@outlook.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com>
Co-authored-by: Wenhao Chen <cwher@outlook.com>
Co-authored-by: Rocky Duan <dementrock@users.noreply.github.com>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions <github-actions@github.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: Zhongkai Zhao <kanezz620@gmail.com>
Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-04-18 08:10:18 +00:00
|
|
|
dtype: {a.dtype} vs {b.dtype}",
|
2023-09-19 06:20:26 +00:00
|
|
|
)
|
2022-03-16 09:20:05 +00:00
|
|
|
|
2022-09-08 07:25:06 +00:00
|
|
|
|
2022-03-16 09:20:05 +00:00
|
|
|
def assert_equal_in_group(tensor: Tensor, process_group: ProcessGroup = None):
|
|
|
|
# all gather tensors from different ranks
|
|
|
|
world_size = dist.get_world_size(process_group)
|
|
|
|
tensor_list = [torch.empty_like(tensor) for _ in range(world_size)]
|
|
|
|
dist.all_gather(tensor_list, tensor, group=process_group)
|
|
|
|
|
|
|
|
# check if they are equal one by one
|
|
|
|
for i in range(world_size - 1):
|
|
|
|
a = tensor_list[i]
|
2022-09-08 07:25:06 +00:00
|
|
|
b = tensor_list[i + 1]
|
2023-09-19 06:20:26 +00:00
|
|
|
assert torch.all(a == b), f"expected tensors on rank {i} and {i + 1} to be equal but they are not, {a} vs {b}"
|
2023-05-10 04:17:02 +00:00
|
|
|
|
|
|
|
|
2024-03-27 03:19:32 +00:00
|
|
|
def check_state_dict_equal(
|
|
|
|
d1: OrderedDict,
|
|
|
|
d2: OrderedDict,
|
|
|
|
ignore_device: bool = True,
|
|
|
|
ignore_dtype: bool = False,
|
|
|
|
):
|
2023-09-19 06:20:26 +00:00
|
|
|
assert len(list(d1.keys())) == len(
|
|
|
|
list(d2.keys())
|
|
|
|
), f"Number of keys unequal: {len(list(d1.keys()))} vs {len(list(d2.keys()))}"
|
2023-07-07 08:33:06 +00:00
|
|
|
for k, v1 in d1.items():
|
|
|
|
assert k in d2
|
|
|
|
v2 = d2[k]
|
|
|
|
if isinstance(v1, dict):
|
|
|
|
assert isinstance(v2, dict)
|
|
|
|
check_state_dict_equal(v1, v2, ignore_device)
|
|
|
|
elif isinstance(v1, list):
|
|
|
|
assert isinstance(v2, list)
|
|
|
|
for v1_i, v2_i in zip(v1, v2):
|
|
|
|
if isinstance(v1_i, torch.Tensor):
|
|
|
|
assert isinstance(v2_i, torch.Tensor)
|
2023-05-10 04:17:02 +00:00
|
|
|
if not ignore_device:
|
2023-07-07 08:33:06 +00:00
|
|
|
v1_i = v1_i.to("cpu")
|
|
|
|
v2_i = v2_i.to("cpu")
|
2023-10-12 02:39:08 +00:00
|
|
|
if ignore_dtype:
|
|
|
|
v1_i = v1_i.to(v2_i.dtype)
|
2023-07-07 08:33:06 +00:00
|
|
|
assert_close_loose(v1_i, v2_i)
|
|
|
|
elif isinstance(v1_i, dict):
|
|
|
|
assert isinstance(v2_i, dict)
|
|
|
|
check_state_dict_equal(v1_i, v2_i, ignore_device)
|
2023-05-10 04:17:02 +00:00
|
|
|
else:
|
2023-07-07 08:33:06 +00:00
|
|
|
assert v1_i == v2_i, f"{v1_i} not equals to {v2_i}"
|
|
|
|
elif isinstance(v1, torch.Tensor):
|
|
|
|
assert isinstance(v2, torch.Tensor)
|
2023-05-10 04:17:02 +00:00
|
|
|
if not ignore_device:
|
2023-07-07 08:33:06 +00:00
|
|
|
v1 = v1.to("cpu")
|
|
|
|
v2 = v2.to("cpu")
|
2023-10-12 02:39:08 +00:00
|
|
|
if ignore_dtype:
|
|
|
|
v1 = v1.to(v2.dtype)
|
2023-07-07 08:33:06 +00:00
|
|
|
assert_close_loose(v1, v2)
|
2023-05-10 04:17:02 +00:00
|
|
|
else:
|
2023-07-07 08:33:06 +00:00
|
|
|
assert v1 == v2, f"{v1} not equals to {v2}"
|
|
|
|
|
|
|
|
|
|
|
|
def check_state_dict_equal_pytree(d1: OrderedDict, d2: OrderedDict, ignore_device: bool = True):
|
|
|
|
flat_d1, _ = tree_flatten(d1)
|
|
|
|
flat_d2, _ = tree_flatten(d2)
|
|
|
|
assert len(flat_d1) == len(flat_d2)
|
|
|
|
for v1, v2 in zip(flat_d1, flat_d2):
|
|
|
|
if isinstance(v1, torch.Tensor):
|
|
|
|
assert isinstance(v2, torch.Tensor)
|
|
|
|
if not ignore_device:
|
|
|
|
v1 = v1.to("cpu")
|
|
|
|
v2 = v2.to("cpu")
|
|
|
|
assert_close_loose(v1, v2)
|
|
|
|
else:
|
|
|
|
assert v1 == v2, f"{v1} not equals to {v2}"
|
2023-06-19 09:57:37 +00:00
|
|
|
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
def assert_hf_output_close(
|
2024-03-27 03:19:32 +00:00
|
|
|
out1: Any,
|
|
|
|
out2: Any,
|
|
|
|
ignore_keys: List[str] = None,
|
|
|
|
track_name: str = "",
|
|
|
|
atol=1e-5,
|
|
|
|
rtol=1e-5,
|
2023-09-19 06:20:26 +00:00
|
|
|
):
|
2023-06-19 09:57:37 +00:00
|
|
|
"""
|
|
|
|
Check if two outputs from huggingface are equal.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
out1 (Any): the first output
|
|
|
|
out2 (Any): the second output
|
|
|
|
ignore_keys (List[str]): the keys to ignore when comparing two dicts
|
|
|
|
track_name (str): the name of the value compared, used to track the path
|
|
|
|
"""
|
|
|
|
if isinstance(out1, dict) and isinstance(out2, dict):
|
|
|
|
# if two values are dict
|
|
|
|
# we recursively check the keys
|
|
|
|
assert set(out1.keys()) == set(out2.keys())
|
|
|
|
for k in out1.keys():
|
|
|
|
if ignore_keys is not None and k in ignore_keys:
|
|
|
|
continue
|
2023-09-19 06:20:26 +00:00
|
|
|
assert_hf_output_close(
|
2024-03-27 03:19:32 +00:00
|
|
|
out1[k],
|
|
|
|
out2[k],
|
|
|
|
track_name=f"{track_name}.{k}",
|
|
|
|
ignore_keys=ignore_keys,
|
|
|
|
atol=atol,
|
|
|
|
rtol=rtol,
|
2023-09-19 06:20:26 +00:00
|
|
|
)
|
2023-06-19 09:57:37 +00:00
|
|
|
elif isinstance(out1, (list, tuple)) and isinstance(out2, (list, tuple)):
|
|
|
|
# if two values are list
|
|
|
|
# we recursively check the elements
|
|
|
|
assert len(out1) == len(out2)
|
|
|
|
for i in range(len(out1)):
|
2023-09-19 06:20:26 +00:00
|
|
|
assert_hf_output_close(
|
2024-03-27 03:19:32 +00:00
|
|
|
out1[i],
|
|
|
|
out2[i],
|
|
|
|
track_name=f"{track_name}.{i}",
|
|
|
|
ignore_keys=ignore_keys,
|
|
|
|
atol=atol,
|
|
|
|
rtol=rtol,
|
2023-09-19 06:20:26 +00:00
|
|
|
)
|
2023-06-19 09:57:37 +00:00
|
|
|
elif isinstance(out1, Tensor) and isinstance(out2, Tensor):
|
|
|
|
if out1.shape != out2.shape:
|
|
|
|
raise AssertionError(f"{track_name}: shape mismatch: {out1.shape} vs {out2.shape}")
|
2024-03-27 03:19:32 +00:00
|
|
|
assert_close(
|
2023-06-19 09:57:37 +00:00
|
|
|
out1, out2, atol=atol, rtol=rtol
|
2023-06-21 01:32:46 +00:00
|
|
|
), f"{track_name}: tensor value mismatch\nvalue 1: {out1}\nvalue 2: {out2}, \nmean error: {torch.abs(out1 - out2).mean()}"
|
2023-06-19 09:57:37 +00:00
|
|
|
else:
|
|
|
|
assert out1 == out2, f"{track_name}: value mismatch.\nout1: {out1}\nout2: {out2}"
|