mirror of https://github.com/hpcaitech/ColossalAI
added testing module (#435)
parent
dbdc9a7783
commit
bffd85bf34
|
@ -0,0 +1,4 @@
|
|||
from .comparison import assert_equal, assert_not_equal, assert_close, assert_close_loose, assert_equal_in_group
|
||||
from .utils import parameterize
|
||||
|
||||
__all__ = ['assert_equal', 'assert_not_equal', 'assert_close', 'assert_close_loose', 'assert_equal_in_group', 'parameterize']
|
|
@ -0,0 +1,29 @@
|
|||
import torch
|
||||
import torch.distributed as dist
|
||||
from torch import Tensor
|
||||
from torch.distributed import ProcessGroup
|
||||
|
||||
|
||||
def assert_equal(a: Tensor, b: Tensor):
|
||||
assert torch.all(a == b), f'expected a and b to be equal but they are not, {a} vs {b}'
|
||||
|
||||
def assert_not_equal(a: Tensor, b: Tensor):
|
||||
assert not torch.all(a == b), f'expected a and b to be not equal but they are, {a} vs {b}'
|
||||
|
||||
def assert_close(a: Tensor, b: Tensor, rtol: float = 1e-5, atol: float = 1e-8):
|
||||
assert torch.allclose(a, b, rtol=rtol, atol=atol), f'expected a and b to be close but they are not, {a} vs {b}'
|
||||
|
||||
def assert_close_loose(a: Tensor, b: Tensor, rtol: float = 1e-2, atol: float = 1e-3):
|
||||
assert_close(a, b, rtol, atol)
|
||||
|
||||
def assert_equal_in_group(tensor: Tensor, process_group: ProcessGroup = None):
|
||||
# all gather tensors from different ranks
|
||||
world_size = dist.get_world_size(process_group)
|
||||
tensor_list = [torch.empty_like(tensor) for _ in range(world_size)]
|
||||
dist.all_gather(tensor_list, tensor, group=process_group)
|
||||
|
||||
# check if they are equal one by one
|
||||
for i in range(world_size - 1):
|
||||
a = tensor_list[i]
|
||||
b = tensor_list[i+1]
|
||||
assert torch.all(a == b), f'expected tensors on rank {i} and {i+1} to be equal but they are not, {a} vs {b}'
|
|
@ -0,0 +1,52 @@
|
|||
from typing import List, Any
|
||||
from functools import partial
|
||||
|
||||
|
||||
def parameterize(argument: str, values: List[Any]):
|
||||
"""
|
||||
This function is to simulate the same behavior as pytest.mark.parameterize. As
|
||||
we want to avoid the number of distributed network initialization, we need to have
|
||||
this extra decorator on the function launched by torch.multiprocessing.
|
||||
|
||||
If a function is wrapped with this wrapper, non-paramterized arguments must be keyword arguments,
|
||||
positioanl arguments are not allowed.
|
||||
|
||||
Example 1:
|
||||
|
||||
@parameterize('person', ['xavier', 'davis'])
|
||||
def say_something(person, msg):
|
||||
print(f'{person}: {msg}')
|
||||
|
||||
say_something(msg='hello')
|
||||
|
||||
This will generate output:
|
||||
> xavier: hello
|
||||
> davis: hello
|
||||
|
||||
|
||||
Exampel 2:
|
||||
|
||||
@parameterize('person', ['xavier', 'davis'])
|
||||
@parameterize('msg', ['hello', 'bye', 'stop'])
|
||||
def say_something(person, msg):
|
||||
print(f'{person}: {msg}')
|
||||
|
||||
say_something()
|
||||
|
||||
This will generate output:
|
||||
> xavier: hello
|
||||
> xavier: bye
|
||||
> xavier: stop
|
||||
> davis: hello
|
||||
> davis: bye
|
||||
> davis: stop
|
||||
"""
|
||||
|
||||
def _wrapper(func):
|
||||
def _execute_function_by_param(**kwargs):
|
||||
for val in values:
|
||||
arg_map = {argument: val}
|
||||
partial_func = partial(func, **arg_map)
|
||||
partial_func(**kwargs)
|
||||
return _execute_function_by_param
|
||||
return _wrapper
|
Loading…
Reference in New Issue