|
|
|
import torch
|
|
|
|
import torch.distributed as dist
|
|
|
|
from enum import Enum
|
|
|
|
from torch.optim import Optimizer
|
|
|
|
from colossalai.nn.parallel.data_parallel import ZeroDDP
|
|
|
|
from typing import Dict
|
|
|
|
from colossalai.amp.naive_amp.grad_scaler import DynamicGradScaler
|
|
|
|
from colossalai.logging import get_dist_logger
|
|
|
|
from colossalai.nn.optimizer import ColossalaiOptimizer
|
|
|
|
from colossalai.utils import get_current_device, disposable
|
|
|
|
from colossalai.utils.common import _compute_grad_lp, compute_grad_norm, _clip_grad_norm
|
|
|
|
from collections import defaultdict, abc as container_abcs
|
|
|
|
from copy import deepcopy
|
|
|
|
from itertools import chain
|
|
|
|
from torch._six import inf
|
|
|
|
|
|
|
|
|
|
|
|
class OptimState(Enum):
|
|
|
|
SCALED = 0
|
|
|
|
UNSCALED = 1
|
|
|
|
|
|
|
|
|
|
|
|
class ZeroOptimizer(ColossalaiOptimizer):
|
|
|
|
"""A wrapper for optimizer. ``ZeroDDP`` and ``ZeroOptimizer`` implement Zero Redundancy Optimizer (ZeRO state-3).
|
|
|
|
|
|
|
|
Note:
|
|
|
|
You must use ``ZeroDDP`` with ``ZeroOptimizer``.
|
|
|
|
|
|
|
|
Note:
|
|
|
|
Make sure you set ``placement_policy`` of ``GeminiManager`` to `"auto"`,
|
|
|
|
if you set ``gpu_margin_mem_ratio > 0``.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
optim (Optimizer): An Optimizer instance.
|
|
|
|
module (ZeroDDP): A ``ZeroDDP`` instance.
|
|
|
|
gpu_margin_mem_ratio (float, optional): The ratio of GPU remaining memory (after the first forward-backward)
|
|
|
|
which will be used when using hybrid CPU optimizer.
|
|
|
|
This argument is meaningless when `placement_policy` of `GeminiManager` is not "auto".
|
|
|
|
Defaults to 0.0.
|
|
|
|
initial_scale (float, optional): Initial scale used by DynamicGradScaler. Defaults to 2**32.
|
|
|
|
min_scale (float, optional): Min scale used by DynamicGradScaler. Defaults to 1.
|
|
|
|
growth_factor (float, optional): growth_factor used by DynamicGradScaler. Defaults to 2.
|
|
|
|
backoff_factor (float, optional): backoff_factor used by DynamicGradScaler. Defaults to 0.5.
|
|
|
|
growth_interval (float, optional): growth_interval used by DynamicGradScaler. Defaults to 1000.
|
|
|
|
hysteresis (float, optional): hysteresis used by DynamicGradScaler. Defaults to 2.
|
|
|
|
max_scale (int, optional): max_scale used by DynamicGradScaler. Defaults to 2**32.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
optim: Optimizer,
|
|
|
|
module: ZeroDDP,
|
|
|
|
gpu_margin_mem_ratio: float = 0.0,
|
|
|
|
initial_scale: float = 2**32,
|
|
|
|
min_scale: float = 1,
|
|
|
|
growth_factor: float = 2,
|
|
|
|
backoff_factor: float = 0.5,
|
|
|
|
growth_interval: int = 1000,
|
|
|
|
hysteresis: int = 2,
|
|
|
|
max_scale: float = 2**32):
|
|
|
|
super().__init__(optim)
|
|
|
|
assert isinstance(module, ZeroDDP)
|
|
|
|
self.module = module
|
|
|
|
self.gemini_manager = module.gemini_manager
|
|
|
|
self.chunk_manager = self.gemini_manager.chunk_manager
|
|
|
|
self.optim_state = OptimState.UNSCALED
|
|
|
|
self.fp16_param_to_fp32_param: Dict[torch.Tensor, torch.Tensor] = {}
|
|
|
|
for p, fp32_p in zip(module.parameters(), module.fp32_params):
|
|
|
|
self.fp16_param_to_fp32_param[p] = fp32_p
|
|
|
|
|
|
|
|
# Grad scaler
|
|
|
|
self.grad_scaler = DynamicGradScaler(initial_scale=initial_scale,
|
|
|
|
min_scale=min_scale,
|
|
|
|
growth_factor=growth_factor,
|
|
|
|
backoff_factor=backoff_factor,
|
|
|
|
growth_interval=growth_interval,
|
|
|
|
hysteresis=hysteresis,
|
|
|
|
max_scale=max_scale)
|
|
|
|
self._found_overflow: torch.Tensor = torch.zeros(1, dtype=torch.int64, device=torch.cuda.current_device())
|
|
|
|
self._logger = get_dist_logger()
|
|
|
|
|
|
|
|
self.gpu_margin_mem_ratio: float = float(gpu_margin_mem_ratio)
|
|
|
|
assert 0.0 <= self.gpu_margin_mem_ratio <= 1.0, f'gpu_margin_mem_ratio must >=0.0 and <=1.0'
|
|
|
|
# Only move fp32 shards from CPU to GPU when user allows and inner optimizer is valid
|
|
|
|
# Inner optimizer must support optimizing hybrid (CPU and CUDA) tensors,
|
|
|
|
# and it must set `num_fp32_shards_per_param` correctly
|
|
|
|
self._should_move_fp32_params_h2d: bool = self.gemini_manager.is_cuda_margin_mem_avail and self.gpu_margin_mem_ratio > 0.0 and getattr(
|
|
|
|
optim, 'num_fp32_shards_per_param', 0) >= 2
|
|
|
|
if self.gpu_margin_mem_ratio > 0.0 and not self.gemini_manager.is_cuda_margin_mem_avail:
|
|
|
|
self._logger.warning(f'gpu_margin_mem_ratio is meaningless when placement_policy is not "auto"', ranks=[0])
|
|
|
|
|
|
|
|
self._register_states = disposable(self._register_states_)
|
|
|
|
|
|
|
|
def _update_params_ptr(self):
|
|
|
|
for group in self.optim.param_groups:
|
|
|
|
for p in group['params']:
|
|
|
|
if not self.module.chunk_manager.get_chunk(p).is_empty:
|
|
|
|
p.data = self.fp16_param_to_fp32_param[p]
|
|
|
|
else:
|
|
|
|
assert p.grad is None
|
|
|
|
|
|
|
|
def _update_fp16_params(self):
|
|
|
|
self.module.chunk_manager.copy_chunk_group('fp16_param', 'fp32_param')
|
|
|
|
|
|
|
|
def _check_overflow(self):
|
|
|
|
# clear previous overflow record
|
|
|
|
self._found_overflow.fill_(self.module.overflow_counter)
|
|
|
|
|
|
|
|
# all-reduce across global group
|
|
|
|
dist.all_reduce(self._found_overflow)
|
|
|
|
|
|
|
|
return self._found_overflow.item() > 0
|
|
|
|
|
|
|
|
def _unscale_grads(self):
|
|
|
|
assert self.optim_state == OptimState.SCALED
|
|
|
|
for group in self.optim.param_groups:
|
|
|
|
for p in group['params']:
|
|
|
|
if p.grad is not None:
|
|
|
|
p.grad.data.div_(self.loss_scale)
|
|
|
|
self.optim_state = OptimState.UNSCALED
|
|
|
|
|
|
|
|
@property
|
|
|
|
def loss_scale(self):
|
|
|
|
return self.grad_scaler.scale.item()
|
|
|
|
|
|
|
|
def zero_grad(self, *args, **kwargs):
|
|
|
|
self.module.overflow_counter = 0
|
|
|
|
return self.optim.zero_grad(set_to_none=True)
|
|
|
|
|
|
|
|
def step(self, *args, **kwargs):
|
|
|
|
self._maybe_move_fp32_params()
|
|
|
|
# unscale grads if scaled
|
|
|
|
if self.optim_state == OptimState.SCALED:
|
|
|
|
self._unscale_grads()
|
|
|
|
found_inf = self._check_overflow()
|
|
|
|
self.grad_scaler.update(found_inf)
|
|
|
|
if found_inf:
|
|
|
|
self._logger.info(f'Found overflow. Skip step')
|
|
|
|
self.zero_grad()
|
|
|
|
self._update_fp16_params()
|
|
|
|
return
|
|
|
|
self._update_params_ptr()
|
|
|
|
ret = self.optim.step(*args, **kwargs)
|
|
|
|
self._register_states()
|
|
|
|
self.zero_grad()
|
|
|
|
self._update_fp16_params()
|
|
|
|
return ret
|
|
|
|
|
|
|
|
def compute_grad_norm(self, norm_type: float = 2.0) -> float:
|
|
|
|
norm_type = float(norm_type)
|
|
|
|
if not self.chunk_manager.enable_distributed_storage:
|
|
|
|
return compute_grad_norm(self.module.parameters(), norm_type)
|
|
|
|
|
|
|
|
non_distributed_params = []
|
|
|
|
distributed_params = []
|
|
|
|
for p in self.module.parameters():
|
|
|
|
if getattr(p, '_ddp_to_ignore', False):
|
|
|
|
non_distributed_params.append(p)
|
|
|
|
else:
|
|
|
|
distributed_params.append(p)
|
|
|
|
non_distributed_norm = _compute_grad_lp(non_distributed_params, norm_type)
|
|
|
|
distributed_norm_tensor = torch.tensor([_compute_grad_lp(distributed_params, norm_type)],
|
|
|
|
device=get_current_device())
|
|
|
|
if norm_type == inf:
|
|
|
|
dist.all_reduce(distributed_norm_tensor,
|
|
|
|
op=dist.ReduceOp.MAX,
|
|
|
|
group=self.chunk_manager.process_group.dp_process_group())
|
|
|
|
total_norm = max(non_distributed_norm, distributed_norm_tensor.item())
|
|
|
|
else:
|
|
|
|
dist.all_reduce(distributed_norm_tensor, group=self.chunk_manager.process_group.dp_process_group())
|
|
|
|
total_norm = non_distributed_norm + distributed_norm_tensor.item()
|
|
|
|
total_norm = total_norm**(1 / norm_type)
|
|
|
|
return total_norm
|
|
|
|
|
|
|
|
def clip_grad_norm(self, model: torch.nn.Module, max_norm: float, norm_type: float = 2.0):
|
|
|
|
if self.optim_state == OptimState.SCALED:
|
|
|
|
self._unscale_grads()
|
|
|
|
total_norm = self.compute_grad_norm(norm_type)
|
|
|
|
_clip_grad_norm(self.module.parameters(), max_norm, total_norm)
|
|
|
|
return total_norm
|
|
|
|
|
|
|
|
def backward(self, loss: torch.Tensor):
|
|
|
|
loss = self.loss_scale * loss
|
|
|
|
self.optim_state = OptimState.SCALED
|
|
|
|
self.module.backward(loss)
|
|
|
|
|
|
|
|
def backward_by_grad(self, tensor: torch.Tensor, grad: torch.Tensor):
|
|
|
|
# This function is called except the last stage of pipeline parallel
|
|
|
|
# It receives the scaled grad from the previous rank
|
|
|
|
# No need to scale the grad again
|
|
|
|
# Need to unscale when optimizing
|
|
|
|
self.optim_state = OptimState.SCALED
|
|
|
|
self.module.backward_by_grad(tensor, grad)
|
|
|
|
|
|
|
|
def _maybe_move_fp32_params(self):
|
|
|
|
if self._should_move_fp32_params_h2d:
|
|
|
|
self._should_move_fp32_params_h2d = False
|
|
|
|
available_cuda_margin_mem = self.gemini_manager.cuda_margin_mem * self.gpu_margin_mem_ratio
|
|
|
|
fp32_params_available_cuda_margin_mem = available_cuda_margin_mem / self.optim.num_fp32_shards_per_param
|
|
|
|
fp32_params_used_cuda_margin_mem = 0
|
|
|
|
for fp16_param_chunk, fp32_param_chunk in zip(self.chunk_manager.chunk_groups['fp16_param'],
|
|
|
|
self.chunk_manager.chunk_groups['fp32_param']):
|
|
|
|
if fp32_param_chunk.is_empty:
|
|
|
|
continue
|
|
|
|
if fp32_params_used_cuda_margin_mem + fp32_param_chunk.mem < fp32_params_available_cuda_margin_mem:
|
|
|
|
self.chunk_manager.move_chunk(fp32_param_chunk, get_current_device())
|
|
|
|
# stores grad now
|
|
|
|
self.chunk_manager.move_chunk(fp16_param_chunk, get_current_device())
|
|
|
|
self.module._set_chunk_grad_device(fp16_param_chunk, get_current_device())
|
|
|
|
fp32_params_used_cuda_margin_mem += fp32_param_chunk.mem
|
|
|
|
for p in fp16_param_chunk.get_tensors():
|
|
|
|
state = self.optim.state[p]
|
|
|
|
for k, v in state.items():
|
|
|
|
if isinstance(v, torch.Tensor):
|
|
|
|
state[k] = v.to(get_current_device())
|
|
|
|
|
|
|
|
self.module._setup_grads_ptr()
|
|
|
|
|
|
|
|
def _register_states_(self):
|
|
|
|
for group in self.optim.param_groups:
|
|
|
|
for p in group['params']:
|
|
|
|
state = self.optim.state[p]
|
|
|
|
for val in state.values():
|
|
|
|
if isinstance(val, torch.Tensor):
|
|
|
|
self.chunk_manager.add_extern_static_tensor(val)
|
|
|
|
|
|
|
|
def state_dict(self, only_rank_0: bool = True):
|
|
|
|
r"""Returns the state of the optimizer as a :class:`dict`. If only_rank_0 is True, for DP rank != 0, this function returns None.
|
|
|
|
This saves memory usage.
|
|
|
|
|
|
|
|
It contains two entries:
|
|
|
|
|
|
|
|
* state - a dict holding current optimization state. Its content
|
|
|
|
differs between optimizer classes.
|
|
|
|
* param_groups - a list containing all parameter groups where each
|
|
|
|
parameter group is a dict
|
|
|
|
"""
|
|
|
|
is_rank_0 = self.chunk_manager.process_group.dp_local_rank() == 0
|
|
|
|
if not self.chunk_manager.enable_distributed_storage and only_rank_0 and not is_rank_0:
|
|
|
|
return
|
|
|
|
optim_state_dict = super().state_dict()
|
|
|
|
scaler_state_dict = self.grad_scaler.state_dict()
|
|
|
|
optim_state_dict['scaler'] = scaler_state_dict
|
|
|
|
if not self.chunk_manager.enable_distributed_storage:
|
|
|
|
return optim_state_dict
|
|
|
|
local_state = {k: convert_state_dict_to_cpu(v) for k, v in optim_state_dict['state'].items() if len(v) > 0}
|
|
|
|
if not self.chunk_manager.process_group.has_cpu_groups:
|
|
|
|
self.chunk_manager.process_group.set_cpu_groups()
|
|
|
|
output = [None for _ in range(self.chunk_manager.process_group.dp_world_size())]
|
|
|
|
if only_rank_0:
|
|
|
|
dst_rank = self.chunk_manager.process_group.dp_rank_list()[0]
|
|
|
|
dist.gather_object(local_state,
|
|
|
|
output if self.chunk_manager.process_group.dp_local_rank() == 0 else None,
|
|
|
|
dst=dst_rank,
|
|
|
|
group=self.chunk_manager.process_group.cpu_dp_process_group())
|
|
|
|
if not is_rank_0:
|
|
|
|
return
|
|
|
|
else:
|
|
|
|
dist.all_gather_object(output, local_state, group=self.chunk_manager.process_group.cpu_dp_process_group())
|
|
|
|
for state in output:
|
|
|
|
optim_state_dict['state'].update(state)
|
|
|
|
return optim_state_dict
|
|
|
|
|
|
|
|
def load_state_dict(self, state_dict):
|
|
|
|
r"""Loads the optimizer state.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
state_dict (dict): optimizer state. Should be an object returned
|
|
|
|
from a call to :meth:`state_dict`.
|
|
|
|
"""
|
|
|
|
if 'scaler' not in state_dict:
|
|
|
|
self._logger.warning('Missing scaler when loading optimizer state dict', ranks=[0])
|
|
|
|
else:
|
|
|
|
self.grad_scaler.load_state_dict(deepcopy(state_dict['scaler']))
|
|
|
|
|
|
|
|
# Validate the state_dict
|
|
|
|
groups = self.param_groups
|
|
|
|
saved_groups = deepcopy(state_dict['param_groups'])
|
|
|
|
|
|
|
|
if len(groups) != len(saved_groups):
|
|
|
|
raise ValueError("loaded state dict has a different number of "
|
|
|
|
"parameter groups")
|
|
|
|
param_lens = (len(g['params']) for g in groups)
|
|
|
|
saved_lens = (len(g['params']) for g in saved_groups)
|
|
|
|
if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens)):
|
|
|
|
raise ValueError("loaded state dict contains a parameter group "
|
|
|
|
"that doesn't match the size of optimizer's group")
|
|
|
|
|
|
|
|
# Update the state
|
|
|
|
id_map = {
|
|
|
|
old_id: p for old_id, p in zip(chain.from_iterable((g['params'] for g in saved_groups
|
|
|
|
)), chain.from_iterable((g['params'] for g in groups)))
|
|
|
|
}
|
|
|
|
|
|
|
|
def cast(param, value):
|
|
|
|
r"""Make a deep copy of value, casting all tensors to device of param."""
|
|
|
|
if isinstance(value, torch.Tensor):
|
|
|
|
# Floating-point types are a bit special here. They are the only ones
|
|
|
|
# that are assumed to always match the type of params.
|
|
|
|
if param.is_floating_point():
|
|
|
|
value = value.to(param.dtype)
|
|
|
|
value = value.to(param.device)
|
|
|
|
return value
|
|
|
|
elif isinstance(value, dict):
|
|
|
|
return {k: cast(param, v) for k, v in value.items()}
|
|
|
|
elif isinstance(value, container_abcs.Iterable):
|
|
|
|
return type(value)(cast(param, v) for v in value)
|
|
|
|
else:
|
|
|
|
return value
|
|
|
|
|
|
|
|
# Copy state assigned to params (and cast tensors to appropriate types).
|
|
|
|
# State that is not assigned to params is copied as is (needed for
|
|
|
|
# backward compatibility).
|
|
|
|
state = defaultdict(dict)
|
|
|
|
for k, v in state_dict['state'].items():
|
|
|
|
if k in id_map:
|
|
|
|
param = self.fp16_param_to_fp32_param[id_map[k]]
|
|
|
|
if param.storage().size() > 0:
|
|
|
|
state[param] = cast(param, deepcopy(v))
|
|
|
|
else:
|
|
|
|
state[k] = deepcopy(v)
|
|
|
|
|
|
|
|
# Update parameter groups, setting their 'params' value
|
|
|
|
def update_group(group, new_group):
|
|
|
|
new_group['params'] = group['params']
|
|
|
|
return new_group
|
|
|
|
|
|
|
|
param_groups = [update_group(g, ng) for g, ng in zip(groups, saved_groups)]
|
|
|
|
self.__setstate__({'state': state, 'param_groups': param_groups})
|
|
|
|
|
|
|
|
|
|
|
|
def convert_state_dict_to_cpu(state: Dict[str, torch.Tensor]):
|
|
|
|
return {k: v.cpu() if isinstance(v, torch.Tensor) else v for k, v in state.items()}
|