2022-06-02 04:13:15 +00:00
|
|
|
import torch
|
|
|
|
import torch.distributed as dist
|
|
|
|
from enum import Enum
|
|
|
|
from torch.optim import Optimizer
|
2022-06-06 07:34:41 +00:00
|
|
|
from colossalai.nn.parallel.data_parallel import ColoDDPV2
|
2022-06-02 04:13:15 +00:00
|
|
|
from typing import Dict
|
|
|
|
from colossalai.amp.naive_amp.grad_scaler import DynamicGradScaler
|
|
|
|
from colossalai.logging import get_dist_logger
|
|
|
|
from colossalai.nn.optimizer import ColossalaiOptimizer
|
|
|
|
|
|
|
|
|
|
|
|
class OptimState(Enum):
|
|
|
|
SCALED = 0
|
|
|
|
UNSCALED = 1
|
|
|
|
|
|
|
|
|
|
|
|
class ZeroOptimizer(ColossalaiOptimizer):
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
optim: Optimizer,
|
|
|
|
module: ColoDDPV2,
|
|
|
|
initial_scale: float = 2**32,
|
|
|
|
min_scale: float = 1,
|
|
|
|
growth_factor: float = 2,
|
|
|
|
backoff_factor: float = 0.5,
|
|
|
|
growth_interval: int = 1000,
|
|
|
|
hysteresis: int = 2,
|
|
|
|
max_scale: float = 2**32):
|
|
|
|
super().__init__(optim)
|
|
|
|
assert isinstance(module, ColoDDPV2)
|
|
|
|
self.module = module
|
|
|
|
self.optim_state = OptimState.UNSCALED
|
|
|
|
self.fp16_param_to_fp32_param: Dict[torch.Tensor, torch.Tensor] = {}
|
|
|
|
for p, fp32_p in zip(module.parameters(), module.fp32_params):
|
|
|
|
self.fp16_param_to_fp32_param[p] = fp32_p
|
|
|
|
|
|
|
|
# Grad scaler
|
|
|
|
self.grad_scaler = DynamicGradScaler(initial_scale=initial_scale,
|
|
|
|
min_scale=min_scale,
|
|
|
|
growth_factor=growth_factor,
|
|
|
|
backoff_factor=backoff_factor,
|
|
|
|
growth_interval=growth_interval,
|
|
|
|
hysteresis=hysteresis,
|
|
|
|
max_scale=max_scale)
|
|
|
|
self._found_overflow: torch.Tensor = torch.zeros(1, dtype=torch.int64, device=torch.cuda.current_device())
|
|
|
|
self._logger = get_dist_logger()
|
|
|
|
|
|
|
|
def _update_params_ptr(self):
|
|
|
|
for group in self.optim.param_groups:
|
|
|
|
for p in group['params']:
|
2022-06-09 12:56:34 +00:00
|
|
|
if not self.module.chunk_manager.get_chunk(p).is_free:
|
2022-06-02 04:13:15 +00:00
|
|
|
p.data = self.fp16_param_to_fp32_param[p]
|
|
|
|
else:
|
|
|
|
assert p.grad is None
|
|
|
|
|
|
|
|
def _update_fp16_params(self):
|
2022-06-07 02:30:46 +00:00
|
|
|
self.module.chunk_manager.copy_chunk_group('fp16_param', 'fp32_param')
|
2022-06-02 04:13:15 +00:00
|
|
|
|
|
|
|
def _check_overflow(self):
|
|
|
|
# clear previous overflow record
|
|
|
|
self._found_overflow.fill_(self.module.overflow_counter)
|
|
|
|
|
|
|
|
# all-reduce across global group
|
|
|
|
dist.all_reduce(self._found_overflow)
|
|
|
|
|
|
|
|
return self._found_overflow.item() > 0
|
|
|
|
|
|
|
|
def _unscale_grads(self):
|
|
|
|
assert self.optim_state == OptimState.SCALED
|
|
|
|
for group in self.optim.param_groups:
|
|
|
|
for p in group['params']:
|
|
|
|
if p.grad is not None:
|
|
|
|
p.grad.data.div_(self.loss_scale)
|
|
|
|
self.optim_state = OptimState.UNSCALED
|
|
|
|
|
|
|
|
@property
|
|
|
|
def loss_scale(self):
|
|
|
|
return self.grad_scaler.scale.item()
|
|
|
|
|
|
|
|
def zero_grad(self, *args, **kwargs):
|
|
|
|
self.module.overflow_counter = 0
|
|
|
|
return self.optim.zero_grad(set_to_none=True)
|
|
|
|
|
|
|
|
def step(self, *args, **kwargs):
|
|
|
|
# unscale grads if scaled
|
|
|
|
if self.optim_state == OptimState.SCALED:
|
|
|
|
self._unscale_grads()
|
|
|
|
found_inf = self._check_overflow()
|
|
|
|
self.grad_scaler.update(found_inf)
|
|
|
|
if found_inf:
|
|
|
|
self._logger.info(f'Found overflow. Skip step')
|
|
|
|
self.zero_grad()
|
|
|
|
self._update_fp16_params()
|
|
|
|
return
|
|
|
|
self._update_params_ptr()
|
|
|
|
ret = self.optim.step(*args, **kwargs)
|
|
|
|
self._update_fp16_params()
|
|
|
|
return ret
|
|
|
|
|
|
|
|
def clip_grad_norm(self, model: torch.nn.Module, max_norm: float):
|
|
|
|
if self.optim_state == OptimState.SCALED:
|
|
|
|
self._unscale_grads()
|
|
|
|
return super().clip_grad_norm(model, max_norm)
|
|
|
|
|
|
|
|
def backward(self, loss: torch.Tensor):
|
|
|
|
loss = self.loss_scale * loss
|
|
|
|
self.optim_state = OptimState.SCALED
|
|
|
|
self.module.backward(loss)
|
|
|
|
|
|
|
|
def backward_by_grad(self, tensor: torch.Tensor, grad: torch.Tensor):
|
|
|
|
self.module.backward_by_grad(tensor, grad)
|