[zero] zero optim supports loading local state dict (#1171)

* zero optim supports loading local state dict

* polish code

* add unit test
pull/1174/head
ver217 2022-06-24 17:25:57 +08:00 committed by GitHub
parent 4b9bba8116
commit 561e90493f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 114 additions and 0 deletions

View File

@ -144,6 +144,12 @@ class ZeroOptimizer(ColossalaiOptimizer):
self.chunk_manager.move_chunk(fp16_param_chunk, get_current_device())
self.module._set_chunk_grad_device(fp16_param_chunk, get_current_device())
fp32_params_used_cuda_margin_mem += fp32_param_chunk.mem
for p in fp16_param_chunk.get_tensors():
state = self.optim.state[p]
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.to(get_current_device())
self.module._setup_grads_ptr()
def _register_states_(self):
@ -153,3 +159,13 @@ class ZeroOptimizer(ColossalaiOptimizer):
for val in state.values():
if isinstance(val, torch.Tensor):
self.chunk_manager.add_extern_static_tensor(val)
def load_state_dict(self, *args, **kwargs):
super().load_state_dict(*args, **kwargs)
for group in self.optim.param_groups:
for p in group['params']:
state = self.optim.state[p]
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.to(dtype=self.fp16_param_to_fp32_param[p].dtype,
device=self.fp16_param_to_fp32_param[p].device)

View File

@ -0,0 +1,98 @@
import pytest
import colossalai
import torch
from colossalai.context.parallel_mode import ParallelMode
import torch.multiprocessing as mp
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.utils.cuda import get_current_device
from colossalai.utils import free_port
from colossalai.utils.model.colo_init_context import ColoInitContext
from colossalai.tensor import ChunkManager
from colossalai.core import global_context as gpc
from functools import partial
from tests.test_tensor._utils import set_seed
from tests.components_to_test.registry import non_distributed_component_funcs
from colossalai.nn.parallel.data_parallel import ZeroDDP
from colossalai.gemini import GeminiManager
from colossalai.testing import parameterize
from colossalai.nn.optimizer import HybridAdam
from colossalai.zero import ZeroOptimizer
def init_zero(model, use_chunk, use_zero, placement_policy):
chunk_size = ChunkManager.search_chunk_size(model, 8192, 8) if use_chunk else None
chunk_manager = ChunkManager(chunk_size,
enable_distributed_storage=use_zero,
init_device=GeminiManager.get_default_device(placement_policy))
gemini_manager = GeminiManager(placement_policy, chunk_manager)
return ZeroDDP(model, gemini_manager)
def run_step(model, optim, criterion, data, label):
optim.zero_grad()
logits = model(data)
loss = criterion(logits, label)
optim.backward(loss)
optim.step()
def check_state_dict_eq(state_dict, other):
for p, state in state_dict['state'].items():
other_state = other['state'][p]
for k, v in state.items():
if isinstance(v, torch.Tensor):
assert torch.allclose(v, other_state[k], atol=1e-3), f'{v} vs {other_state[k]}'
else:
assert v == other_state[k]
@parameterize('use_chunk', [False, True])
@parameterize('use_zero', [False, True])
@parameterize('placement_policy', ['cuda', 'cpu'])
def run_nested_model(use_chunk, use_zero, placement_policy):
get_components_func = non_distributed_component_funcs.get_callable('nested_model')
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
set_seed(42)
with ColoInitContext(device=get_current_device()):
model = model_builder()
set_seed(42)
with ColoInitContext(device=get_current_device()):
model_copy = model_builder()
model = init_zero(model, use_chunk, use_zero, placement_policy)
model_copy = init_zero(model_copy, use_chunk, use_zero, placement_policy)
optim = HybridAdam(model.parameters(), lr=1e-3)
optim = ZeroOptimizer(optim, model, initial_scale=32)
optim_copy = HybridAdam(model_copy.parameters(), lr=1e-3)
optim_copy = ZeroOptimizer(optim_copy, model_copy, initial_scale=32)
model.train()
model_copy.train()
set_seed(gpc.get_local_rank(ParallelMode.DATA))
data_iter = iter(train_dataloader)
data, label = map(lambda x: x.cuda(), next(data_iter))
run_step(model, optim, criterion, data, label)
optim_copy.load_state_dict(optim.state_dict())
check_state_dict_eq(optim.state_dict(), optim_copy.state_dict())
data, label = map(lambda x: x.cuda(), next(data_iter))
run_step(model_copy, optim_copy, criterion, data, label)
def run_dist(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_nested_model()
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 2])
@rerun_if_address_is_in_use()
def test_zero_optim_state_dist(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_zero_optim_state_dist(2)