2023-05-10 04:17:02 +00:00
|
|
|
from typing import OrderedDict
|
|
|
|
|
2022-03-16 09:20:05 +00:00
|
|
|
import torch
|
|
|
|
import torch.distributed as dist
|
|
|
|
from torch import Tensor
|
|
|
|
from torch.distributed import ProcessGroup
|
2023-01-04 03:59:56 +00:00
|
|
|
from torch.testing import assert_close
|
2022-03-16 09:20:05 +00:00
|
|
|
|
|
|
|
|
|
|
|
def assert_equal(a: Tensor, b: Tensor):
|
|
|
|
assert torch.all(a == b), f'expected a and b to be equal but they are not, {a} vs {b}'
|
|
|
|
|
2022-09-08 07:25:06 +00:00
|
|
|
|
2022-03-16 09:20:05 +00:00
|
|
|
def assert_not_equal(a: Tensor, b: Tensor):
|
|
|
|
assert not torch.all(a == b), f'expected a and b to be not equal but they are, {a} vs {b}'
|
|
|
|
|
2022-09-08 07:25:06 +00:00
|
|
|
|
2022-03-17 06:40:52 +00:00
|
|
|
def assert_close_loose(a: Tensor, b: Tensor, rtol: float = 1e-3, atol: float = 1e-3):
|
2023-01-04 03:59:56 +00:00
|
|
|
assert_close(a, b, rtol=rtol, atol=atol)
|
2022-03-16 09:20:05 +00:00
|
|
|
|
2022-09-08 07:25:06 +00:00
|
|
|
|
2022-03-16 09:20:05 +00:00
|
|
|
def assert_equal_in_group(tensor: Tensor, process_group: ProcessGroup = None):
|
|
|
|
# all gather tensors from different ranks
|
|
|
|
world_size = dist.get_world_size(process_group)
|
|
|
|
tensor_list = [torch.empty_like(tensor) for _ in range(world_size)]
|
|
|
|
dist.all_gather(tensor_list, tensor, group=process_group)
|
|
|
|
|
|
|
|
# check if they are equal one by one
|
|
|
|
for i in range(world_size - 1):
|
|
|
|
a = tensor_list[i]
|
2022-09-08 07:25:06 +00:00
|
|
|
b = tensor_list[i + 1]
|
2023-01-04 03:59:56 +00:00
|
|
|
assert torch.all(a == b), f'expected tensors on rank {i} and {i + 1} to be equal but they are not, {a} vs {b}'
|
2023-05-10 04:17:02 +00:00
|
|
|
|
|
|
|
|
|
|
|
def check_state_dict_equal(d1: OrderedDict, d2: OrderedDict, ignore_device: bool = True):
|
|
|
|
for k, v in d1.items():
|
|
|
|
if isinstance(v, dict):
|
|
|
|
check_state_dict_equal(v, d2[k])
|
|
|
|
elif isinstance(v, list):
|
|
|
|
for i in range(len(v)):
|
|
|
|
if isinstance(v[i], torch.Tensor):
|
|
|
|
if not ignore_device:
|
|
|
|
v[i] = v[i].to("cpu")
|
|
|
|
d2[k][i] = d2[k][i].to("cpu")
|
|
|
|
assert torch.equal(v[i], d2[k][i])
|
|
|
|
else:
|
|
|
|
assert v[i] == d2[k][i]
|
|
|
|
elif isinstance(v, torch.Tensor):
|
|
|
|
if not ignore_device:
|
|
|
|
v = v.to("cpu")
|
|
|
|
d2[k] = d2[k].to("cpu")
|
|
|
|
assert torch.equal(v, d2[k])
|
|
|
|
else:
|
|
|
|
assert v == d2[k]
|