ColossalAI/colossalai/testing/comparison.py

55 lines
1.9 KiB
Python
Raw Normal View History

from typing import OrderedDict
2022-03-16 09:20:05 +00:00
import torch
import torch.distributed as dist
from torch import Tensor
from torch.distributed import ProcessGroup
from torch.testing import assert_close
2022-03-16 09:20:05 +00:00
def assert_equal(a: Tensor, b: Tensor):
assert torch.all(a == b), f'expected a and b to be equal but they are not, {a} vs {b}'
2022-03-16 09:20:05 +00:00
def assert_not_equal(a: Tensor, b: Tensor):
assert not torch.all(a == b), f'expected a and b to be not equal but they are, {a} vs {b}'
def assert_close_loose(a: Tensor, b: Tensor, rtol: float = 1e-3, atol: float = 1e-3):
assert_close(a, b, rtol=rtol, atol=atol)
2022-03-16 09:20:05 +00:00
2022-03-16 09:20:05 +00:00
def assert_equal_in_group(tensor: Tensor, process_group: ProcessGroup = None):
# all gather tensors from different ranks
world_size = dist.get_world_size(process_group)
tensor_list = [torch.empty_like(tensor) for _ in range(world_size)]
dist.all_gather(tensor_list, tensor, group=process_group)
# check if they are equal one by one
for i in range(world_size - 1):
a = tensor_list[i]
b = tensor_list[i + 1]
assert torch.all(a == b), f'expected tensors on rank {i} and {i + 1} to be equal but they are not, {a} vs {b}'
def check_state_dict_equal(d1: OrderedDict, d2: OrderedDict, ignore_device: bool = True):
for k, v in d1.items():
if isinstance(v, dict):
check_state_dict_equal(v, d2[k])
elif isinstance(v, list):
for i in range(len(v)):
if isinstance(v[i], torch.Tensor):
if not ignore_device:
v[i] = v[i].to("cpu")
d2[k][i] = d2[k][i].to("cpu")
assert torch.equal(v[i], d2[k][i])
else:
assert v[i] == d2[k][i]
elif isinstance(v, torch.Tensor):
if not ignore_device:
v = v.to("cpu")
d2[k] = d2[k].to("cpu")
assert torch.equal(v, d2[k])
else:
assert v == d2[k]