|
|
|
import torch
|
|
|
|
from typing import List, Optional
|
|
|
|
from colossalai.logging import get_dist_logger
|
|
|
|
from colossalai.context.singleton_meta import SingletonMeta
|
|
|
|
|
|
|
|
|
|
|
|
class PyTorchProcessGroupDict(metaclass=SingletonMeta):
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
# distributed settings
|
|
|
|
self.dict = {}
|
|
|
|
|
|
|
|
def get(self, rank_list: List[int], backend: str = 'nccl'):
|
|
|
|
"""Reuse Pytorch ProcessGroup when such a group is initialized
|
|
|
|
"""
|
|
|
|
rank_tuple = tuple(rank_list)
|
|
|
|
# we need to convert the passed list to a tuple
|
|
|
|
# since List is unhashable
|
|
|
|
pg_key = (backend, rank_tuple)
|
|
|
|
|
|
|
|
if pg_key not in self.dict:
|
|
|
|
self.dict[pg_key] = torch.distributed.new_group(ranks=rank_list, backend=backend)
|
|
|
|
return self.dict[pg_key]
|
|
|
|
|
|
|
|
|
|
|
|
PYTORCHPGDICT_ = PyTorchProcessGroupDict()
|
|
|
|
|
|
|
|
|
|
|
|
class ProcessGroup:
|
|
|
|
"""
|
|
|
|
Process Group contains group partition for Tensor Parallel and Data Parallel.
|
|
|
|
NOTE, the ProcessGroup must be used after torch.distributed.initialize()
|
|
|
|
args:
|
|
|
|
rank: the global rank of the current process.
|
|
|
|
ranks: List[int], a list of rank id belongings to this process group.
|
|
|
|
backend: str, the backend of the process group.
|
|
|
|
tp_degree: Optional[int], tensor parallelism degree, default None means 1
|
|
|
|
dp_degree: Optional[int], data parallelism degree, default None means len(ranks)
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
rank: Optional[int] = None,
|
|
|
|
ranks: Optional[List[int]] = None,
|
|
|
|
tp_degree: Optional[int] = None,
|
|
|
|
dp_degree: Optional[int] = None) -> None:
|
|
|
|
if not torch.distributed.is_initialized():
|
|
|
|
return
|
|
|
|
|
|
|
|
assert torch.distributed.is_initialized(), f"ProcessGroup must be used after distributed initialized"
|
|
|
|
if rank is None:
|
|
|
|
self._rank = torch.distributed.get_rank()
|
|
|
|
else:
|
|
|
|
self._rank = rank
|
|
|
|
|
|
|
|
if ranks is None:
|
|
|
|
self._rank_list = list(range(torch.distributed.get_world_size()))
|
|
|
|
else:
|
|
|
|
self._rank_list = ranks
|
|
|
|
self._rank_list.sort() # ensure that the list is in order
|
|
|
|
|
|
|
|
self._rank_idx = self._rank_list.index(self._rank)
|
|
|
|
self._world_size = len(self._rank_list)
|
|
|
|
|
|
|
|
if dp_degree is None and tp_degree is None:
|
|
|
|
self._dp_degree = self._world_size
|
|
|
|
self._tp_degree = 1
|
|
|
|
elif dp_degree and not tp_degree:
|
|
|
|
self._dp_degree = dp_degree
|
|
|
|
assert self._world_size % self._dp_degree == 0, f"DP degree {dp_degree} should be divisible by {self._world_size} hen DP degree is None"
|
|
|
|
self._tp_degree = self._world_size // dp_degree
|
|
|
|
elif not dp_degree and tp_degree:
|
|
|
|
self._tp_degree = tp_degree
|
|
|
|
assert self._world_size % self._tp_degree == 0, f"TP degree {tp_degree} should be divisible by {self._world_size} when DP degree is None"
|
|
|
|
self._dp_degree = self._world_size // tp_degree
|
|
|
|
else:
|
|
|
|
self._dp_degree = dp_degree
|
|
|
|
self._tp_degree = tp_degree
|
|
|
|
assert self._dp_degree * self._tp_degree == self._world_size, \
|
|
|
|
f"the world size {self._world_size} should equals to the product of DP degree {self._dp_degree}" \
|
|
|
|
f"and TP degree {self._tp_degree}"
|
|
|
|
|
|
|
|
self._tp_rank_list = []
|
|
|
|
self._dp_rank_list = []
|
|
|
|
|
|
|
|
for idx, rank_id in enumerate(self._rank_list):
|
|
|
|
# idx and self._rank_idx in the same tp group
|
|
|
|
if idx % self._tp_degree == self._rank_idx % self._tp_degree:
|
|
|
|
self._dp_rank_list.append(rank_id)
|
|
|
|
if idx // self._tp_degree == self._rank_idx // self._tp_degree:
|
|
|
|
self._tp_rank_list.append(rank_id)
|
|
|
|
|
|
|
|
self._tp_process_group = PYTORCHPGDICT_.get(self._tp_rank_list, 'nccl')
|
|
|
|
self._dp_process_group = PYTORCHPGDICT_.get(self._dp_rank_list, 'nccl')
|
|
|
|
|
|
|
|
self.logger = get_dist_logger('ProcessGroup')
|
|
|
|
self.logger.info(
|
|
|
|
f'{self._rank} NCCL initialize TP group on {self._tp_rank_list}, DP group on {self._dp_rank_list}')
|
|
|
|
|
|
|
|
self._has_cpu_groups = False
|
|
|
|
self._cpu_dp_process_group = None
|
|
|
|
self._cpu_tp_process_group = None
|
|
|
|
|
|
|
|
def set_cpu_groups(self):
|
|
|
|
if self.has_cpu_groups:
|
|
|
|
return
|
|
|
|
self.logger.info(
|
|
|
|
f'{self._rank} Gloo initialize TP group on {self._tp_rank_list}, DP group on {self._dp_rank_list}')
|
|
|
|
self._cpu_tp_process_group = PYTORCHPGDICT_.get(self._tp_rank_list, 'gloo')
|
|
|
|
self._cpu_dp_process_group = PYTORCHPGDICT_.get(self._dp_rank_list, 'gloo')
|
|
|
|
|
|
|
|
@property
|
|
|
|
def has_cpu_groups(self):
|
|
|
|
return self._has_cpu_groups
|
|
|
|
|
|
|
|
def __eq__(self, obj: 'ProcessGroup') -> bool:
|
|
|
|
if not isinstance(obj, ProcessGroup):
|
|
|
|
return False
|
|
|
|
if self._rank != obj._rank:
|
|
|
|
assert False
|
|
|
|
if self._rank_list != obj._rank_list:
|
|
|
|
assert False
|
|
|
|
if self._tp_rank_list != obj._tp_rank_list:
|
|
|
|
assert False
|
|
|
|
if self._dp_rank_list != obj._dp_rank_list:
|
|
|
|
assert False
|
|
|
|
if self._tp_degree != obj._tp_degree:
|
|
|
|
return False
|
|
|
|
if self._dp_degree != obj._dp_degree:
|
|
|
|
return False
|
|
|
|
return True
|
|
|
|
|
|
|
|
def rank(self):
|
|
|
|
return self._rank
|
|
|
|
|
|
|
|
def world_size(self):
|
|
|
|
return self._world_size
|
|
|
|
|
|
|
|
def tp_local_rank(self):
|
|
|
|
return self._rank % self._tp_degree
|
|
|
|
|
|
|
|
def dp_local_rank(self):
|
|
|
|
return self._rank // self._tp_degree
|
|
|
|
|
|
|
|
def dp_world_size(self):
|
|
|
|
return len(self._dp_rank_list)
|
|
|
|
|
|
|
|
def tp_world_size(self):
|
|
|
|
return len(self._tp_rank_list)
|
|
|
|
|
|
|
|
def dp_process_group(self):
|
|
|
|
return self._dp_process_group
|
|
|
|
|
|
|
|
def tp_process_group(self):
|
|
|
|
return self._tp_process_group
|
|
|
|
|
|
|
|
def cpu_dp_process_group(self):
|
|
|
|
return self._cpu_dp_process_group
|
|
|
|
|
|
|
|
def cpu_tp_process_group(self):
|
|
|
|
return self._cpu_tp_process_group
|