|
|
|
import torch
|
|
|
|
from typing import List, Optional
|
|
|
|
from colossalai.logging import get_dist_logger
|
|
|
|
from colossalai.context.singleton_meta import SingletonMeta
|
|
|
|
|
|
|
|
|
|
|
|
class PyTorchProcessGroupDict(metaclass=SingletonMeta):
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
# distributed settings
|
|
|
|
self.dict = {}
|
|
|
|
|
|
|
|
def get(self, rank: int, world_size: int, tp_degree: int, dp_degree: int, backend: str = 'nccl'):
|
|
|
|
key = (tp_degree, dp_degree, backend)
|
|
|
|
if key in self.dict:
|
|
|
|
return self.dict[key]
|
|
|
|
else:
|
|
|
|
self.logger = get_dist_logger('PyTorchProcessGroupDict')
|
|
|
|
_tp_rank_list = []
|
|
|
|
_dp_rank_list = []
|
|
|
|
|
|
|
|
for rank_id in range(world_size):
|
|
|
|
# rank_id and self._rank in the same tp group
|
|
|
|
if rank_id % tp_degree == rank % tp_degree:
|
|
|
|
_dp_rank_list.append(rank_id)
|
|
|
|
if rank_id // tp_degree == rank // tp_degree:
|
|
|
|
_tp_rank_list.append(rank_id)
|
|
|
|
|
|
|
|
_tp_process_group = torch.distributed.new_group(ranks=_tp_rank_list, backend=backend)
|
|
|
|
_dp_process_group = torch.distributed.new_group(ranks=_dp_rank_list, backend=backend)
|
|
|
|
self.logger.info(
|
|
|
|
f'rank {rank} initialize process group on {backend}, dp ranks: {_dp_rank_list} tp ranks: {_tp_rank_list}'
|
|
|
|
)
|
|
|
|
self.dict[key] = _tp_rank_list, _tp_process_group, _dp_rank_list, _dp_process_group
|
|
|
|
return _tp_rank_list, _tp_process_group, _dp_rank_list, _dp_process_group
|
|
|
|
|
|
|
|
|
|
|
|
PYTORCHPGDICT_ = PyTorchProcessGroupDict()
|
|
|
|
|
|
|
|
|
|
|
|
class ProcessGroup:
|
|
|
|
"""
|
|
|
|
Process Group contains group partition for Tensor Parallel and Data Parallel.
|
|
|
|
NOTE, the ProcessGroup must be used after torch.distributed.initialize()
|
|
|
|
args:
|
|
|
|
rank: the global rank of the current process.
|
|
|
|
ranks: List[int], a list of rank id belongings to this process group.
|
|
|
|
backend: str, the backend of the process group.
|
|
|
|
tp_degree: Optional[int], tensor parallelism degree, default None means 1
|
|
|
|
dp_degree: Optional[int], data parallelism degree, default None means len(ranks)
|
|
|
|
"""
|
|
|
|
|
|
|
|
#TODO(haichen) fix me! ranks now must start from 0,1,2,3...
|
|
|
|
def __init__(self,
|
|
|
|
rank: Optional[int] = None,
|
|
|
|
ranks: Optional[List[int]] = None,
|
|
|
|
tp_degree: Optional[int] = None,
|
|
|
|
dp_degree: Optional[int] = None) -> None:
|
|
|
|
if not torch.distributed.is_initialized():
|
|
|
|
return
|
|
|
|
|
|
|
|
assert torch.distributed.is_initialized(), f"ProcessGroup must be used after distributed initialized"
|
|
|
|
if rank is None:
|
|
|
|
self._rank = torch.distributed.get_rank()
|
|
|
|
else:
|
|
|
|
self._rank = rank
|
|
|
|
|
|
|
|
if ranks is None:
|
|
|
|
self._rank_list = list(range(torch.distributed.get_world_size()))
|
|
|
|
else:
|
|
|
|
self._rank_list = ranks
|
|
|
|
|
|
|
|
self._world_size = len(self._rank_list)
|
|
|
|
|
|
|
|
if dp_degree is None and tp_degree is None:
|
|
|
|
self._dp_degree = self._world_size
|
|
|
|
self._tp_degree = 1
|
|
|
|
|
|
|
|
if dp_degree and not tp_degree:
|
|
|
|
self._dp_degree = dp_degree
|
|
|
|
assert self._world_size % self._dp_degree == 0, f"DP degree {dp_degree} should be divisible by {self._world_size} hen DP degree is None"
|
|
|
|
self._tp_degree = self._world_size // dp_degree
|
|
|
|
|
|
|
|
if not dp_degree and tp_degree:
|
|
|
|
self._tp_degree = tp_degree
|
|
|
|
assert self._world_size % self._tp_degree == 0, f"TP degree {tp_degree} should be divisible by {self._world_size} when DP degree is None"
|
|
|
|
self._dp_degree = self._world_size // tp_degree
|
|
|
|
|
|
|
|
self._tp_rank_list, self._tp_process_group, self._dp_rank_list, self._dp_process_group = PYTORCHPGDICT_.get(
|
|
|
|
self._rank, self._world_size, self._tp_degree, self._dp_degree, 'nccl')
|
|
|
|
self._has_cpu_groups = False
|
|
|
|
|
|
|
|
def set_cpu_groups(self):
|
|
|
|
if self.has_cpu_groups:
|
|
|
|
return
|
|
|
|
self.logger.info(
|
|
|
|
f'{self._rank} Gloo initialize TP group on {self._tp_rank_list}, DP group on {self._dp_rank_list}')
|
|
|
|
self._cpu_tp_process_group = torch.distributed.new_group(ranks=self._tp_rank_list, backend='gloo')
|
|
|
|
self._cpu_dp_process_group = torch.distributed.new_group(ranks=self._dp_rank_list, backend='gloo')
|
|
|
|
|
|
|
|
_, self._cpu_tp_process_group, _, self._cpu_dp_process_group = PYTORCHPGDICT_.get(
|
|
|
|
self._rank, self._world_size, self._tp_degree, self._dp_degree, 'gloo')
|
|
|
|
|
|
|
|
@property
|
|
|
|
def has_cpu_groups(self):
|
|
|
|
return self._has_cpu_groups
|
|
|
|
|
|
|
|
def __eq__(self, obj: 'ProcessGroup') -> bool:
|
|
|
|
if not isinstance(obj, ProcessGroup):
|
|
|
|
return False
|
|
|
|
if self._rank != obj._rank:
|
|
|
|
assert False
|
|
|
|
if self._rank_list != obj._rank_list:
|
|
|
|
assert False
|
|
|
|
if self._tp_rank_list != obj._tp_rank_list:
|
|
|
|
assert False
|
|
|
|
if self._dp_rank_list != obj._dp_rank_list:
|
|
|
|
assert False
|
|
|
|
if self._tp_degree != obj._tp_degree:
|
|
|
|
return False
|
|
|
|
if self._dp_degree != obj._dp_degree:
|
|
|
|
return False
|
|
|
|
return True
|
|
|
|
|
|
|
|
def rank(self):
|
|
|
|
return self._rank
|
|
|
|
|
|
|
|
def world_size(self):
|
|
|
|
return self._world_size
|
|
|
|
|
|
|
|
def tp_local_rank(self):
|
|
|
|
return self._rank % self._tp_degree
|
|
|
|
|
|
|
|
def dp_local_rank(self):
|
|
|
|
return self._rank // self._tp_degree
|
|
|
|
|
|
|
|
def dp_world_size(self):
|
|
|
|
return len(self._dp_rank_list)
|
|
|
|
|
|
|
|
def tp_world_size(self):
|
|
|
|
return len(self._tp_rank_list)
|
|
|
|
|
|
|
|
def dp_process_group(self):
|
|
|
|
return self._dp_process_group
|
|
|
|
|
|
|
|
def tp_process_group(self):
|
|
|
|
return self._tp_process_group
|
|
|
|
|
|
|
|
def cpu_dp_process_group(self):
|
|
|
|
return self._cpu_dp_process_group
|
|
|
|
|
|
|
|
def cpu_tp_process_group(self):
|
|
|
|
return self._cpu_tp_process_group
|