[tensor] improve robustness of class 'ProcessGroup' (#1223)

pull/1225/head
HELSON 2022-07-07 13:55:24 +08:00 committed by GitHub
parent 15d988f954
commit 280a81243d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 41 additions and 34 deletions

View File

@ -10,29 +10,17 @@ class PyTorchProcessGroupDict(metaclass=SingletonMeta):
# distributed settings
self.dict = {}
def get(self, rank: int, world_size: int, tp_degree: int, dp_degree: int, backend: str = 'nccl'):
key = (tp_degree, dp_degree, backend)
if key in self.dict:
return self.dict[key]
else:
self.logger = get_dist_logger('PyTorchProcessGroupDict')
_tp_rank_list = []
_dp_rank_list = []
def get(self, rank_list: List[int], backend: str = 'nccl'):
"""Reuse Pytorch ProcessGroup when such a group is initialized
"""
rank_tuple = tuple(rank_list)
# we need to convert the passed list to a tuple
# since List is unhashable
pg_key = (backend, rank_tuple)
for rank_id in range(world_size):
# rank_id and self._rank in the same tp group
if rank_id % tp_degree == rank % tp_degree:
_dp_rank_list.append(rank_id)
if rank_id // tp_degree == rank // tp_degree:
_tp_rank_list.append(rank_id)
_tp_process_group = torch.distributed.new_group(ranks=_tp_rank_list, backend=backend)
_dp_process_group = torch.distributed.new_group(ranks=_dp_rank_list, backend=backend)
self.logger.info(
f'rank {rank} initialize process group on {backend}, dp ranks: {_dp_rank_list} tp ranks: {_tp_rank_list}'
)
self.dict[key] = _tp_rank_list, _tp_process_group, _dp_rank_list, _dp_process_group
return _tp_rank_list, _tp_process_group, _dp_rank_list, _dp_process_group
if pg_key not in self.dict:
self.dict[pg_key] = torch.distributed.new_group(ranks=rank_list, backend=backend)
return self.dict[pg_key]
PYTORCHPGDICT_ = PyTorchProcessGroupDict()
@ -50,7 +38,6 @@ class ProcessGroup:
dp_degree: Optional[int], data parallelism degree, default None means len(ranks)
"""
#TODO(haichen) fix me! ranks now must start from 0,1,2,3...
def __init__(self,
rank: Optional[int] = None,
ranks: Optional[List[int]] = None,
@ -69,37 +56,57 @@ class ProcessGroup:
self._rank_list = list(range(torch.distributed.get_world_size()))
else:
self._rank_list = ranks
self._rank_list.sort() # ensure that the list is in order
self._rank_idx = self._rank_list.index(self._rank)
self._world_size = len(self._rank_list)
if dp_degree is None and tp_degree is None:
self._dp_degree = self._world_size
self._tp_degree = 1
if dp_degree and not tp_degree:
elif dp_degree and not tp_degree:
self._dp_degree = dp_degree
assert self._world_size % self._dp_degree == 0, f"DP degree {dp_degree} should be divisible by {self._world_size} hen DP degree is None"
self._tp_degree = self._world_size // dp_degree
if not dp_degree and tp_degree:
elif not dp_degree and tp_degree:
self._tp_degree = tp_degree
assert self._world_size % self._tp_degree == 0, f"TP degree {tp_degree} should be divisible by {self._world_size} when DP degree is None"
self._dp_degree = self._world_size // tp_degree
else:
self._dp_degree = dp_degree
self._tp_degree = tp_degree
assert self._dp_degree * self._tp_degree == self._world_size, \
f"the world size {self._world_size} should equals to the product of DP degree {self._dp_degree}" \
f"and TP degree {self._tp_degree}"
self._tp_rank_list = []
self._dp_rank_list = []
for idx, rank_id in enumerate(self._rank_list):
# idx and self._rank_idx in the same tp group
if idx % self._tp_degree == self._rank_idx % self._tp_degree:
self._dp_rank_list.append(rank_id)
if idx // self._tp_degree == self._rank_idx // self._tp_degree:
self._tp_rank_list.append(rank_id)
self._tp_process_group = PYTORCHPGDICT_.get(self._tp_rank_list, 'nccl')
self._dp_process_group = PYTORCHPGDICT_.get(self._dp_rank_list, 'nccl')
self.logger = get_dist_logger('ProcessGroup')
self.logger.info(
f'{self._rank} NCCL initialize TP group on {self._tp_rank_list}, DP group on {self._dp_rank_list}')
self._tp_rank_list, self._tp_process_group, self._dp_rank_list, self._dp_process_group = PYTORCHPGDICT_.get(
self._rank, self._world_size, self._tp_degree, self._dp_degree, 'nccl')
self._has_cpu_groups = False
self._cpu_dp_process_group = None
self._cpu_tp_process_group = None
def set_cpu_groups(self):
if self.has_cpu_groups:
return
self.logger.info(
f'{self._rank} Gloo initialize TP group on {self._tp_rank_list}, DP group on {self._dp_rank_list}')
self._cpu_tp_process_group = torch.distributed.new_group(ranks=self._tp_rank_list, backend='gloo')
self._cpu_dp_process_group = torch.distributed.new_group(ranks=self._dp_rank_list, backend='gloo')
_, self._cpu_tp_process_group, _, self._cpu_dp_process_group = PYTORCHPGDICT_.get(
self._rank, self._world_size, self._tp_degree, self._dp_degree, 'gloo')
self._cpu_tp_process_group = PYTORCHPGDICT_.get(self._tp_rank_list, 'gloo')
self._cpu_dp_process_group = PYTORCHPGDICT_.get(self._dp_rank_list, 'gloo')
@property
def has_cpu_groups(self):