ColossalAI/colossalai/nn/lr_scheduler/cosine.py

130 lines
5.7 KiB
Python
Raw Normal View History

2021-10-28 16:21:23 +00:00
from torch.optim.lr_scheduler import CosineAnnealingLR as _CosineAnnealingLR
from colossalai.registry import LR_SCHEDULERS
from .delayed import DelayerScheduler, WarmupDelayerScheduler, WarmupScheduler
@LR_SCHEDULERS.register_module
class CosineAnnealingLR(_CosineAnnealingLR):
r"""Set the learning rate of each parameter group using a cosine annealing
schedule, where :math:`\eta_{max}` is set to the initial lr and
:math:`T_{cur}` is the number of epochs since the last restart in SGDR:
.. math::
\begin{aligned}
\eta_t & = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})\left(1
+ \cos\left(\frac{T_{cur}}{T_{max}}\pi\right)\right),
& T_{cur} \neq (2k+1)T_{max}; \\
\eta_{t+1} & = \eta_{t} + \frac{1}{2}(\eta_{max} - \eta_{min})
\left(1 - \cos\left(\frac{1}{T_{max}}\pi\right)\right),
& T_{cur} = (2k+1)T_{max}.
\end{aligned}
When last_epoch=-1, sets initial lr as lr. Notice that because the schedule
is defined recursively, the learning rate can be simultaneously modified
outside this scheduler by other operators. If the learning rate is set
solely by this scheduler, the learning rate at each step becomes:
.. math::
\eta_t = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})\left(1 +
\cos\left(\frac{T_{cur}}{T_{max}}\pi\right)\right)
It has been proposed in
`SGDR: Stochastic Gradient Descent with Warm Restarts`_. Note that this only
implements the cosine annealing part of SGDR, and not the restarts.
.. _SGDR\: Stochastic Gradient Descent with Warm Restarts:
https://arxiv.org/abs/1608.03983
:param optimizer: Wrapped optimizer
:type optimizer: torch.optim.Optimizer
2022-01-21 02:44:30 +00:00
:param total_steps: Number of total training steps
2021-10-28 16:21:23 +00:00
:type total_steps: int
:param eta_min: Minimum learning rate, defaults to 0
:type eta_min: int, optional
:param last_epoch: The index of last epoch, defaults to -1
:type last_epoch: int, optional
"""
def __init__(self, optimizer, total_steps: int, eta_min: int = 0, last_epoch: int = -1, **kwargs):
super().__init__(optimizer, total_steps, eta_min=eta_min, last_epoch=last_epoch)
@LR_SCHEDULERS.register_module
class CosineAnnealingWarmupLR(WarmupScheduler):
"""Cosine annealing learning rate scheduler with learning rate warmup. A linear warmup schedule will be applied.
:param optimizer: Wrapped optimizer
:type optimizer: torch.optim.Optimizer
2022-01-21 02:44:30 +00:00
:param total_steps: Number of total training steps
2021-10-28 16:21:23 +00:00
:type total_steps: int
2022-01-21 02:44:30 +00:00
:param warmup_steps: Number of warmup steps, defaults to 0
2021-10-28 16:21:23 +00:00
:type warmup_steps: int, optional
:param eta_min: Minimum learning rate, defaults to 0
:type eta_min: int, optional
:param last_epoch: The index of last epoch, defaults to -1
:type last_epoch: int, optional
"""
2022-01-07 07:08:36 +00:00
def __init__(self, optimizer, total_steps: int, warmup_steps: int = 0, eta_min: float = 0., last_epoch: int = -1):
2021-10-28 16:21:23 +00:00
base_scheduler = _CosineAnnealingLR(
optimizer, total_steps - warmup_steps, eta_min=eta_min, last_epoch=last_epoch)
super().__init__(optimizer, warmup_steps, base_scheduler)
2021-10-28 16:21:23 +00:00
@LR_SCHEDULERS.register_module
class FlatAnnealingLR(DelayerScheduler):
"""Flat and cosine annealing learning rate scheduler. The learning rate will be a fixed value before starting decay.
:param optimizer: Wrapped optimizer
:type optimizer: torch.optim.Optimizer
2022-01-21 02:44:30 +00:00
:param total_steps: Number of total training steps
2021-10-28 16:21:23 +00:00
:type total_steps: int
2022-01-21 02:44:30 +00:00
:param pct_start: Percent of steps before starting learning rate decay
2021-10-28 16:21:23 +00:00
:type pct_start: float
:param last_epoch: The index of last epoch, defaults to -1
:type last_epoch: int, optional
"""
def __init__(self, optimizer, total_steps: int, pct_start: float = 0.72, last_epoch: int = -1, **kwargs):
if not (0.0 <= pct_start <= 1.0):
raise ValueError(
f'pct_start must >= 0.0 and <= 1.0, got {pct_start}')
flat_steps = int(total_steps * pct_start)
anneal_steps = total_steps - flat_steps
base_scheduler = _CosineAnnealingLR(
optimizer, anneal_steps)
super().__init__(optimizer, flat_steps, base_scheduler, last_epoch=last_epoch)
@LR_SCHEDULERS.register_module
class FlatAnnealingWarmupLR(WarmupDelayerScheduler):
2022-01-21 02:44:30 +00:00
"""Flat and cosine annealing learning rate scheduler with learning rate warmup. A linear warmup schedule will be
applied, and then the learning rate will be a fixed value before starting decay.
2021-10-28 16:21:23 +00:00
:param optimizer: Wrapped optimizer
:type optimizer: torch.optim.Optimizer
2022-01-21 02:44:30 +00:00
:param total_steps: Number of total training steps
2021-10-28 16:21:23 +00:00
:type total_steps: int
2022-01-21 02:44:30 +00:00
:param warmup_steps: Number of warmup steps, defaults to 0
2021-10-28 16:21:23 +00:00
:type warmup_steps: int, optional
2022-01-21 02:44:30 +00:00
:param pct_start: Percent of steps before starting learning rate decay
2021-10-28 16:21:23 +00:00
:type pct_start: float
:param eta_min: Minimum learning rate, defaults to 0
:type eta_min: int, optional
:param last_epoch: The index of last epoch, defaults to -1
:type last_epoch: int, optional
"""
def __init__(self, optimizer, total_steps: int, warmup_steps: int = 0, pct_start: float = 0.72, eta_min: int = 0,
last_epoch: int = -1, **kwargs):
if not (0.0 <= pct_start <= 1.0):
raise ValueError(
f'pct_start must >= 0.0 and <= 1.0, got {pct_start}')
flat_steps = int((total_steps - warmup_steps) * pct_start)
anneal_steps = total_steps - warmup_steps - flat_steps
base_scheduler = _CosineAnnealingLR(
optimizer, anneal_steps, eta_min=eta_min)
super().__init__(optimizer, warmup_steps, flat_steps,
base_scheduler, last_epoch=last_epoch)