mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
130 lines
5.7 KiB
130 lines
5.7 KiB
3 years ago
|
from torch.optim.lr_scheduler import CosineAnnealingLR as _CosineAnnealingLR
|
||
|
|
||
|
from colossalai.registry import LR_SCHEDULERS
|
||
|
from .delayed import DelayerScheduler, WarmupDelayerScheduler, WarmupScheduler
|
||
|
|
||
|
|
||
|
@LR_SCHEDULERS.register_module
|
||
|
class CosineAnnealingLR(_CosineAnnealingLR):
|
||
|
r"""Set the learning rate of each parameter group using a cosine annealing
|
||
|
schedule, where :math:`\eta_{max}` is set to the initial lr and
|
||
|
:math:`T_{cur}` is the number of epochs since the last restart in SGDR:
|
||
|
|
||
|
.. math::
|
||
|
\begin{aligned}
|
||
|
\eta_t & = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})\left(1
|
||
|
+ \cos\left(\frac{T_{cur}}{T_{max}}\pi\right)\right),
|
||
|
& T_{cur} \neq (2k+1)T_{max}; \\
|
||
|
\eta_{t+1} & = \eta_{t} + \frac{1}{2}(\eta_{max} - \eta_{min})
|
||
|
\left(1 - \cos\left(\frac{1}{T_{max}}\pi\right)\right),
|
||
|
& T_{cur} = (2k+1)T_{max}.
|
||
|
\end{aligned}
|
||
|
|
||
|
When last_epoch=-1, sets initial lr as lr. Notice that because the schedule
|
||
|
is defined recursively, the learning rate can be simultaneously modified
|
||
|
outside this scheduler by other operators. If the learning rate is set
|
||
|
solely by this scheduler, the learning rate at each step becomes:
|
||
|
|
||
|
.. math::
|
||
|
\eta_t = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})\left(1 +
|
||
|
\cos\left(\frac{T_{cur}}{T_{max}}\pi\right)\right)
|
||
|
|
||
|
It has been proposed in
|
||
|
`SGDR: Stochastic Gradient Descent with Warm Restarts`_. Note that this only
|
||
|
implements the cosine annealing part of SGDR, and not the restarts.
|
||
|
|
||
|
.. _SGDR\: Stochastic Gradient Descent with Warm Restarts:
|
||
|
https://arxiv.org/abs/1608.03983
|
||
|
|
||
|
:param optimizer: Wrapped optimizer
|
||
|
:type optimizer: torch.optim.Optimizer
|
||
|
:param total_steps: number of total training steps
|
||
|
:type total_steps: int
|
||
|
:param eta_min: Minimum learning rate, defaults to 0
|
||
|
:type eta_min: int, optional
|
||
|
:param last_epoch: The index of last epoch, defaults to -1
|
||
|
:type last_epoch: int, optional
|
||
|
"""
|
||
|
|
||
|
def __init__(self, optimizer, total_steps: int, eta_min: int = 0, last_epoch: int = -1, **kwargs):
|
||
|
super().__init__(optimizer, total_steps, eta_min=eta_min, last_epoch=last_epoch)
|
||
|
|
||
|
|
||
|
@LR_SCHEDULERS.register_module
|
||
|
class CosineAnnealingWarmupLR(WarmupScheduler):
|
||
|
"""Cosine annealing learning rate scheduler with learning rate warmup. A linear warmup schedule will be applied.
|
||
|
|
||
|
:param optimizer: Wrapped optimizer
|
||
|
:type optimizer: torch.optim.Optimizer
|
||
|
:param total_steps: number of total training steps
|
||
|
:type total_steps: int
|
||
|
:param warmup_steps: number of warmup steps, defaults to 0
|
||
|
:type warmup_steps: int, optional
|
||
|
:param eta_min: Minimum learning rate, defaults to 0
|
||
|
:type eta_min: int, optional
|
||
|
:param last_epoch: The index of last epoch, defaults to -1
|
||
|
:type last_epoch: int, optional
|
||
|
"""
|
||
|
|
||
|
def __init__(self, optimizer, total_steps: int, warmup_steps: int = 0, eta_min: int = 0, last_epoch: int = -1,
|
||
|
**kwargs):
|
||
|
base_scheduler = _CosineAnnealingLR(
|
||
|
optimizer, total_steps - warmup_steps, eta_min=eta_min)
|
||
|
super().__init__(optimizer, warmup_steps, base_scheduler, last_epoch=last_epoch)
|
||
|
|
||
|
|
||
|
@LR_SCHEDULERS.register_module
|
||
|
class FlatAnnealingLR(DelayerScheduler):
|
||
|
"""Flat and cosine annealing learning rate scheduler. The learning rate will be a fixed value before starting decay.
|
||
|
|
||
|
:param optimizer: Wrapped optimizer
|
||
|
:type optimizer: torch.optim.Optimizer
|
||
|
:param total_steps: number of total training steps
|
||
|
:type total_steps: int
|
||
|
:param pct_start: percent of steps before starting learning rate decay
|
||
|
:type pct_start: float
|
||
|
:param last_epoch: The index of last epoch, defaults to -1
|
||
|
:type last_epoch: int, optional
|
||
|
"""
|
||
|
|
||
|
def __init__(self, optimizer, total_steps: int, pct_start: float = 0.72, last_epoch: int = -1, **kwargs):
|
||
|
if not (0.0 <= pct_start <= 1.0):
|
||
|
raise ValueError(
|
||
|
f'pct_start must >= 0.0 and <= 1.0, got {pct_start}')
|
||
|
flat_steps = int(total_steps * pct_start)
|
||
|
anneal_steps = total_steps - flat_steps
|
||
|
base_scheduler = _CosineAnnealingLR(
|
||
|
optimizer, anneal_steps)
|
||
|
super().__init__(optimizer, flat_steps, base_scheduler, last_epoch=last_epoch)
|
||
|
|
||
|
|
||
|
@LR_SCHEDULERS.register_module
|
||
|
class FlatAnnealingWarmupLR(WarmupDelayerScheduler):
|
||
|
"""Flat and cosine annealing learning rate scheduler with learning rate warmup. A linear warmup schedule will be applied, and then the learning rate will be a fixed value before starting decay.
|
||
|
|
||
|
:param optimizer: Wrapped optimizer
|
||
|
:type optimizer: torch.optim.Optimizer
|
||
|
:param total_steps: number of total training steps
|
||
|
:type total_steps: int
|
||
|
:param warmup_steps: number of warmup steps, defaults to 0
|
||
|
:type warmup_steps: int, optional
|
||
|
:param pct_start: percent of steps before starting learning rate decay
|
||
|
:type pct_start: float
|
||
|
:param eta_min: Minimum learning rate, defaults to 0
|
||
|
:type eta_min: int, optional
|
||
|
:param last_epoch: The index of last epoch, defaults to -1
|
||
|
:type last_epoch: int, optional
|
||
|
"""
|
||
|
|
||
|
def __init__(self, optimizer, total_steps: int, warmup_steps: int = 0, pct_start: float = 0.72, eta_min: int = 0,
|
||
|
last_epoch: int = -1, **kwargs):
|
||
|
if not (0.0 <= pct_start <= 1.0):
|
||
|
raise ValueError(
|
||
|
f'pct_start must >= 0.0 and <= 1.0, got {pct_start}')
|
||
|
flat_steps = int((total_steps - warmup_steps) * pct_start)
|
||
|
anneal_steps = total_steps - warmup_steps - flat_steps
|
||
|
base_scheduler = _CosineAnnealingLR(
|
||
|
optimizer, anneal_steps, eta_min=eta_min)
|
||
|
super().__init__(optimizer, warmup_steps, flat_steps,
|
||
|
base_scheduler, last_epoch=last_epoch)
|