from torch.optim.lr_scheduler import CosineAnnealingLR as _CosineAnnealingLR from colossalai.registry import LR_SCHEDULERS from .delayed import DelayerScheduler, WarmupDelayerScheduler, WarmupScheduler @LR_SCHEDULERS.register_module class CosineAnnealingLR(_CosineAnnealingLR): r"""Set the learning rate of each parameter group using a cosine annealing schedule, where :math:`\eta_{max}` is set to the initial lr and :math:`T_{cur}` is the number of epochs since the last restart in SGDR: .. math:: \begin{aligned} \eta_t & = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})\left(1 + \cos\left(\frac{T_{cur}}{T_{max}}\pi\right)\right), & T_{cur} \neq (2k+1)T_{max}; \\ \eta_{t+1} & = \eta_{t} + \frac{1}{2}(\eta_{max} - \eta_{min}) \left(1 - \cos\left(\frac{1}{T_{max}}\pi\right)\right), & T_{cur} = (2k+1)T_{max}. \end{aligned} When last_epoch=-1, sets initial lr as lr. Notice that because the schedule is defined recursively, the learning rate can be simultaneously modified outside this scheduler by other operators. If the learning rate is set solely by this scheduler, the learning rate at each step becomes: .. math:: \eta_t = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})\left(1 + \cos\left(\frac{T_{cur}}{T_{max}}\pi\right)\right) It has been proposed in `SGDR: Stochastic Gradient Descent with Warm Restarts`_. Note that this only implements the cosine annealing part of SGDR, and not the restarts. .. _SGDR\: Stochastic Gradient Descent with Warm Restarts: https://arxiv.org/abs/1608.03983 :param optimizer: Wrapped optimizer :type optimizer: torch.optim.Optimizer :param total_steps: number of total training steps :type total_steps: int :param eta_min: Minimum learning rate, defaults to 0 :type eta_min: int, optional :param last_epoch: The index of last epoch, defaults to -1 :type last_epoch: int, optional """ def __init__(self, optimizer, total_steps: int, eta_min: int = 0, last_epoch: int = -1, **kwargs): super().__init__(optimizer, total_steps, eta_min=eta_min, last_epoch=last_epoch) @LR_SCHEDULERS.register_module class CosineAnnealingWarmupLR(WarmupScheduler): """Cosine annealing learning rate scheduler with learning rate warmup. A linear warmup schedule will be applied. :param optimizer: Wrapped optimizer :type optimizer: torch.optim.Optimizer :param total_steps: number of total training steps :type total_steps: int :param warmup_steps: number of warmup steps, defaults to 0 :type warmup_steps: int, optional :param eta_min: Minimum learning rate, defaults to 0 :type eta_min: int, optional :param last_epoch: The index of last epoch, defaults to -1 :type last_epoch: int, optional """ def __init__(self, optimizer, total_steps: int, warmup_steps: int = 0, eta_min: int = 0, last_epoch: int = -1, **kwargs): base_scheduler = _CosineAnnealingLR( optimizer, total_steps - warmup_steps, eta_min=eta_min) super().__init__(optimizer, warmup_steps, base_scheduler, last_epoch=last_epoch) @LR_SCHEDULERS.register_module class FlatAnnealingLR(DelayerScheduler): """Flat and cosine annealing learning rate scheduler. The learning rate will be a fixed value before starting decay. :param optimizer: Wrapped optimizer :type optimizer: torch.optim.Optimizer :param total_steps: number of total training steps :type total_steps: int :param pct_start: percent of steps before starting learning rate decay :type pct_start: float :param last_epoch: The index of last epoch, defaults to -1 :type last_epoch: int, optional """ def __init__(self, optimizer, total_steps: int, pct_start: float = 0.72, last_epoch: int = -1, **kwargs): if not (0.0 <= pct_start <= 1.0): raise ValueError( f'pct_start must >= 0.0 and <= 1.0, got {pct_start}') flat_steps = int(total_steps * pct_start) anneal_steps = total_steps - flat_steps base_scheduler = _CosineAnnealingLR( optimizer, anneal_steps) super().__init__(optimizer, flat_steps, base_scheduler, last_epoch=last_epoch) @LR_SCHEDULERS.register_module class FlatAnnealingWarmupLR(WarmupDelayerScheduler): """Flat and cosine annealing learning rate scheduler with learning rate warmup. A linear warmup schedule will be applied, and then the learning rate will be a fixed value before starting decay. :param optimizer: Wrapped optimizer :type optimizer: torch.optim.Optimizer :param total_steps: number of total training steps :type total_steps: int :param warmup_steps: number of warmup steps, defaults to 0 :type warmup_steps: int, optional :param pct_start: percent of steps before starting learning rate decay :type pct_start: float :param eta_min: Minimum learning rate, defaults to 0 :type eta_min: int, optional :param last_epoch: The index of last epoch, defaults to -1 :type last_epoch: int, optional """ def __init__(self, optimizer, total_steps: int, warmup_steps: int = 0, pct_start: float = 0.72, eta_min: int = 0, last_epoch: int = -1, **kwargs): if not (0.0 <= pct_start <= 1.0): raise ValueError( f'pct_start must >= 0.0 and <= 1.0, got {pct_start}') flat_steps = int((total_steps - warmup_steps) * pct_start) anneal_steps = total_steps - warmup_steps - flat_steps base_scheduler = _CosineAnnealingLR( optimizer, anneal_steps, eta_min=eta_min) super().__init__(optimizer, warmup_steps, flat_steps, base_scheduler, last_epoch=last_epoch)