ColossalAI/colossalai/shardformer/examples/convergence_benchmark.py

158 lines
6.3 KiB
Python
Raw Normal View History

import argparse
import math
from typing import Any, List, Union
import evaluate
import torch
import torch.distributed as dist
from data import GLUEDataBuilder
from torch import nn
from torch.optim import Adam, AdamW, Optimizer
from torch.utils._pytree import tree_map
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import BertConfig, BertForSequenceClassification, get_linear_schedule_with_warmup
import colossalai
from colossalai.cluster import DistCoordinator
from colossalai.nn.optimizer import HybridAdam
from colossalai.shardformer import ShardConfig, ShardFormer
def to_device(x: Any, device: torch.device) -> Any:
def _to(t: Any):
if isinstance(t, torch.Tensor):
return t.to(device)
return t
return tree_map(_to, x)
def train(args):
colossalai.launch_from_torch(config={}, seed=42)
coordinator = DistCoordinator()
# prepare for data and dataset
data_builder = GLUEDataBuilder(model_name_or_path=args.pretrain,
task_name=args.task,
train_batch_size=args.batch_size,
eval_batch_size=args.batch_size)
train_dataloader = data_builder.train_dataloader()
test_dataloader = data_builder.test_dataloader()
if args.model == "bert":
cfg = BertConfig.from_pretrained(args.pretrain, num_labels=data_builder.num_labels)
model = BertForSequenceClassification.from_pretrained(args.pretrain, config=cfg)
model.to(torch.cuda.current_device())
# if multiple GPUs, shard the model
if dist.get_world_size() > 1:
tp_group = dist.new_group(backend='nccl')
shard_config = ShardConfig(tensor_parallel_process_group=tp_group,
enable_tensor_parallelism=True,
enable_all_optimization=True)
shard_former = ShardFormer(shard_config=shard_config)
model, _ = shard_former.optimize(model)
optim = Adam(model.parameters(), lr=args.lr)
num_update_steps_per_epoch = len(train_dataloader) // args.accumulation_steps
max_steps = math.ceil(args.max_epochs * num_update_steps_per_epoch)
lr_scheduler = get_linear_schedule_with_warmup(
optim,
num_warmup_steps=math.ceil(max_steps * args.warmup_fraction),
num_training_steps=max_steps,
)
fit(model, optim, lr_scheduler, train_dataloader, args.max_epochs, args.accumulation_steps, args.batch_size,
coordinator)
results = evaluate_model(model, test_dataloader, data_builder.num_labels, args.task, data_builder.eval_splits,
coordinator)
if coordinator.is_master():
print(results)
if args.target_f1 is not None and 'f1' in results:
assert results['f1'] >= args.target_f1, f'f1 score {results["f1"]} is lower than target {args.target_f1}'
def fit(model: nn.Module, optimizer: Optimizer, scheduler, train_dataloader, max_epochs, accumulation_steps, batch_size,
coordinator):
step_bar = tqdm(range(len(train_dataloader) // accumulation_steps * max_epochs),
desc=f'steps',
disable=not coordinator.is_master())
total_loss = 0
for epoch in range(max_epochs):
model.train()
for batch_id, batch in enumerate(train_dataloader):
batch = to_device(batch, torch.cuda.current_device())
outputs = model(**batch)
loss = outputs.loss
loss = loss / accumulation_steps
loss.backward()
total_loss += loss.item()
if (batch_id + 1) % accumulation_steps == 0:
optimizer.step()
scheduler.step()
optimizer.zero_grad()
step_bar.set_postfix({
'epoch': epoch,
'loss': total_loss / batch_size,
'lr': scheduler.get_last_lr()[0]
})
total_loss = 0
step_bar.update()
# evaluate
@torch.no_grad()
def evaluate_model(model: nn.Module, test_dataloader: Union[DataLoader, List[DataLoader]], num_labels: int,
task_name: str, eval_splits: List[str], coordinator: DistCoordinator):
metric = evaluate.load("glue", task_name, process_id=coordinator.rank, num_process=coordinator.world_size)
model.eval()
def evaluate_subset(dataloader: DataLoader):
accum_loss = torch.zeros(1, device=torch.cuda.current_device())
for batch in dataloader:
batch = to_device(batch, torch.cuda.current_device())
outputs = model(**batch)
val_loss, logits = outputs[:2]
accum_loss.add_(val_loss)
if num_labels > 1:
preds = torch.argmax(logits, axis=1)
elif num_labels == 1:
preds = logits.squeeze()
labels = batch["labels"]
metric.add_batch(predictions=preds, references=labels)
results = metric.compute()
if coordinator.is_master():
results['loss'] = accum_loss.item() / (len(dataloader) * dataloader.batch_size)
return results
if isinstance(test_dataloader, DataLoader):
return evaluate_subset(test_dataloader)
else:
assert len(test_dataloader) == len(eval_splits)
final_results = {}
for split, sub_loader in zip(eval_splits, test_dataloader):
results = evaluate_subset(sub_loader)
final_results.update({f'{k}_{split}': v for k, v in results.items()})
return final_results
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-t', '--task', default='mrpc', help="GLUE task to run")
parser.add_argument('--model', type=str, default="bert")
parser.add_argument('--pretrain', type=str, default="bert-base-uncased")
parser.add_argument('--max_epochs', type=int, default=1)
parser.add_argument('--batch_size', type=int, default=4)
parser.add_argument('--lr', type=float, default=2.4e-5)
parser.add_argument('--fused_layernorm', type=bool, default=False)
parser.add_argument('--accumulation_steps', type=int, default=8)
parser.add_argument('--warmup_fraction', type=float, default=0.03)
parser.add_argument('--target_f1', type=float, default=None)
args = parser.parse_args()
train(args)