Browse Source

[shardformer] update shardformer readme (#4689)

* [shardformer] update shardformer readme

* [shardformer] update shardformer readme

* [shardformer] update shardformer readme

* [shardformer] update shardformer readme

* [shardformer] update shardformer readme
pull/4697/head
flybird11111 1 year ago committed by GitHub
parent
commit
8844691f4b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 147
      colossalai/shardformer/README.md
  2. 7
      colossalai/shardformer/examples/convergence_benchmark.py
  3. 2
      colossalai/shardformer/examples/convergence_benchmark.sh
  4. 6
      colossalai/shardformer/examples/performance_benchmark.py

147
colossalai/shardformer/README.md

@ -30,27 +30,48 @@
### Quick Start
The sample API usage is given below(If you enable the use of flash attention, please install `flash_attn`. In addition, xformers's `cutlass_op` provide a supplementary optimization, It requires that the sequence length be a multiple of 8.):
The sample API usage is given below(If you enable the use of flash attention, please install `flash_attn`. In addition, xformers's `cutlass_op` provide a supplementary optimization):
```python
from colossalai.shardformer import ShardConfig, Shard
from colossalai.shardformer import ShardConfig, ShardFormer
from transformers import BertForMaskedLM
import colossalai
# launch colossalai
colossalai.launch_from_torch()
colossalai.launch_from_torch(config={})
# create model
config = BertConfig.from_pretrained('bert-base-uncased')
model = BertForMaskedLM.from_pretrained('bert-base-uncased', config=config)
# create huggingface model as normal
shard_config = ShardConfig()
shard_config = ShardConfig(tensor_parallel_process_group=tp_group,
pipeline_stage_manager=stage_manager,
enable_tensor_parallelism=True,
enable_fused_normalization=True,
enable_flash_attention=True,
enable_jit_fused=True,
enable_sequence_parallelism=True,
enable_sequence_overlap=True)
shard_former = ShardFormer(shard_config=shard_config)
sharded_model = shard_former.optimize(model).to('cuda')
sharded_model, shared_params = shard_former.optimize(model).to('cuda')
# do everything like normal
...
```
shardformer configuration
`tensor_parallel_process_group`: the process group of tensor parallelism, it's necessary when using tensor parallel.
`pipeline_stage_manager`: If using pipeline parallelism, it's necessary to specify a pipeline stage manager for inter-process communication in pipeline parallelism.
{{ autodoc:colossalai.pipeline.stage_manager.PipelineStageManager }}
`enable_tensor_parallelism`: using tensor parallel, partition the model along the columns or along the rows
`enable_fused_normalization`: using apex fused layernorm
`enable_flash_attention`: using flash attention
`enable_jit_fused`: using jit fused operators
`enable_sequence_parallelism`: using sequence parallelism, partition these non-tensor parallel regions along the sequence dimension.
`enable_sequence_overlap`: overlap the computation and communication in the sequence parallelism, it's used with `enable_sequence_parallelism`.
### Write your own policy
@ -82,44 +103,30 @@ We will follow this roadmap to develop Shardformer:
- [x] API Implementation
- [x] Unit Testing
- [ ] Policy Implementation
- [ ] Hugging Face
- [ ] NLP
- [x] BERT
- [x] T5
- [x] LlaMa
- [x] GPT2
- [x] OPT
- [x] BLOOM
- [ ] GLM
- [ ] RoBERTa
- [ ] ALBERT
- [ ] ERNIE
- [ ] GPT Neo
- [ ] GPT-J
- [ ] CV
- [x] ViT
- [ ] BEiT
- [ ] SwinTransformer
- [ ] SwinTransformer V2
- [ ] Audio
- [x] Whisper
- [ ] Multi-modal
- [x] SAM
- [x] BLIP-2
- [ ] Flash Attention Support
- [ ] NLP
- [x] BERT
- [x] T5
- [x] LlaMa
- [x] GPT2
- [x] OPT
- [x] BLOOM
- [ ] GLM
- [ ] RoBERTa
- [ ] ALBERT
- [ ] ERNIE
- [ ] GPT Neo
- [ ] GPT-J
| model | tensor parallel | pipeline parallel | lazy initialization | xformer | flash attn2 | jit fused operator | fused layernorm | sequence parallel | overlap |
| :------: | :-----: | :-----: | :--------: | :---------: | :------: | :-----: | :-----: | :--------: | :---------: |
| bert | [x] | [x] | [x] | [x] | [x] | [x] | [x] | [x] | [x] |
| t5 | [x] | [x] | [x] | [x] | [x] | [x] | [x] | [ ] | [ ] |
| llama V1/V2 | [x] | [x] | [x] | [x] | [x] | [x] | [x] | [ ] | [ ] |
| gpt2 | [x] | [x] | [x] | [x] | [x] | [x] | [x] | [x] | [x] |
| opt | [x] | [x] | [x] | [x] | [x] | [x] | [x] | [ ] | [ ] |
| bloom | [x] | [x] | [x] | [x] | [x] | [x] | [x] | [x] | [x] |
| chatglm2 | [x] | [x] | [x] | [x] | [x] | [x] | [x] | [x] | [x] |
| vit | [x] | [x] | [ ] | [x] | [x] | [x] | [x] | [ ] | [ ] |
| whisper | [x] | [x] | [x] | [x] | [x] | [x] | [x] | [ ] | [ ] |
| sam | [x] | [ ] | [ ] | [x] | [x] | [x] | [x] | [ ] | [ ] |
| blip2 | [x] | [ ] | [ ] | [x] | [x] | [x] | [x] | [ ] | [ ] |
| roberta | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] |
| albert | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] |
| ernie | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] |
| gpt-neo | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] |
| gpt-j | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] |
| beit | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] |
| swin | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] |
| swin V2 | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] |
| qwen | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] |
## 💡 API Design
@ -286,41 +293,36 @@ class ShardFormer:
Example:
org_model = BertForMaskedLM.from_pretrained('bert-base-uncased')
shard_config = ShardConfig()
shard_former = ShardFormer(shard_config=shard_config)
shard_former.init_distributed()
model = shard_former.optimize(model, policy=policy)
dataloader = shard_former.shard_dataset(dataset)
model, shared_params = shard_former.optimize(org_model)
"""
def __init__(self, shard_config: ShardConfig):
"""
Do two things:
1. Create a colossalai.cluster.process_group_manager to manage process groups for dp, tp and pp
1. Create a distribute coordinator
2. serve as a store for shard config
"""
self.shard_config = shard_config
self.pg_manager = None
self.coordinator = DistCoordinator()
def init_distributed(self) -> colossalai.cluster.ProcessGroupManager:
"""
Initialize the distributed process group according to the
"""
pg_manager = ...
self.pg_manager = pg_manager
return pg_manager
def optimize(self, model: nn.Module, policy: Policy = None) -> Tuple[nn.Module, List[Dict[int, Tensor]]]:
r"""
This method will optimize the model based on the given policy.
def shard_model(self, model: torch.nn.Module,policy: Policy) -> torch.nn.Module:
"""
Shard model for TP and PP
"""
...
Args:
model (`torch.nn.Model`): the origin huggingface model
shard_config (`ShardConfig`): the config for distribute information
policy (`Policy`): the custom policy for sharding
def shard_dataset(self, dataset: Dataset) -> Dataloader:
Returns: the sharded model and the shared parameters
"""
Shard dataset for DP
"""
...
sharder = ModelSharder(model=model, shard_config=self.shard_config, policy=policy)
shared_params = sharder.shard()
return model, shared_params
```
## ⌨ Development Notes
@ -429,13 +431,24 @@ As shown in the figures above, when the sequence length is around 1000 or greate
### Convergence
To validate that training the model using shardformers does not impact its convergence. We [fine-tuned the BERT model](../../examples/language/bert/finetune.py) using both shardformer and non-shardformer approaches. The example that utilizes Shardformer simultaneously with Pipeline Parallelism and Data Parallelism (Zero1). We then compared the accuracy, loss, and F1 score of the training results.
To validate that training the model using shardformers does not impact its convergence. We [fine-tuned the BERT model](./examples/convergence_benchmark.py) using both shardformer and non-shardformer approaches. The example that utilizes Shardformer simultaneously with Pipeline Parallelism and Data Parallelism (Zero1). We then compared the accuracy, loss, and F1 score of the training results.
the configurations are as follows:
```python
batch_size = 2
epoch = 3
lr = 2.4e-5
accumulation_steps = 8
warmup_fraction = 0.03
```
| accuracy | f1 | loss | GPU number | model sharded |
| :------: | :-----: | :-----: | :--------: | :---------: |
| 0.84589 | 0.88613 | 0.43414 | 4 | True |
| 0.83594 | 0.88064 | 0.43298 | 1 | False |
| 0.82971 | 0.87713 | 0.23194 | 4 | True |
| 0.83797 | 0.88006 | 0.22683 | 2 | True |
| 0.84521 | 0.88700 | 0.21822 | 1 | False |
Overall, the results demonstrate that using shardformers during model training does not affect the convergence.

7
colossalai/shardformer/examples/convergence_benchmark.py

@ -49,9 +49,12 @@ def train(args):
# if multiple GPUs, shard the model
if dist.get_world_size() > 1:
shard_config = ShardConfig(enable_fused_normalization=args.fused_layernorm)
tp_group = dist.new_group(backend='nccl')
shard_config = ShardConfig(tensor_parallel_process_group=tp_group,
enable_tensor_parallelism=True,
enable_all_optimization=True)
shard_former = ShardFormer(shard_config=shard_config)
model = shard_former.optimize(model)
model, _ = shard_former.optimize(model)
optim = Adam(model.parameters(), lr=args.lr)
num_update_steps_per_epoch = len(train_dataloader) // args.accumulation_steps

2
colossalai/shardformer/examples/convergence_benchmark.sh

@ -1,7 +1,7 @@
torchrun --standalone --nproc_per_node=4 convergence_benchmark.py \
--model "bert" \
--pretrain "bert-base-uncased" \
--max_epochs 1 \
--max_epochs 3 \
--batch_size 2 \
--lr 2.4e-5 \
--fused_layernorm False \

6
colossalai/shardformer/examples/performance_benchmark.py

@ -29,7 +29,8 @@ MODEL_CONFIG = transformers.LlamaConfig(num_hidden_layers=4,
intermediate_size=256,
num_attention_heads=4,
max_position_embeddings=128,
num_labels=16)
num_labels=16,
pad_token_id=2)
BATCH, N_HEADS, N_CTX, D_HEAD = 4, 8, 4096, 64
model_func = lambda: transformers.LlamaForSequenceClassification(MODEL_CONFIG)
@ -73,7 +74,8 @@ def bench_shardformer(BATCH, N_CTX, provider, model_func, dtype=torch.float32, d
if provider == "shard_model":
shard_config = ShardConfig(enable_fused_normalization=True, enable_tensor_parallelism=True)
shard_former = ShardFormer(shard_config=shard_config)
sharded_model = shard_former.optimize(model).cuda()
sharded_model, _ = shard_former.optimize(model)
sharded_model = sharded_model.cuda()
fn = lambda: train(sharded_model, data)
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
return ms

Loading…
Cancel
Save