mirror of https://github.com/hpcaitech/ColossalAI
Browse Source
* [shardformer] add benchmark of shardformer * [shardformer] add benchmark of shardformerpull/4157/head
jiangmingyan
1 year ago
committed by
Frank Lee
5 changed files with 323 additions and 1 deletions
@ -0,0 +1,146 @@
|
||||
import datasets |
||||
from torch.utils.data import DataLoader |
||||
from transformers import AutoTokenizer, PreTrainedTokenizer |
||||
|
||||
from colossalai.booster.plugin.dp_plugin_base import DPPluginBase |
||||
|
||||
|
||||
class GLUEDataBuilder: |
||||
|
||||
task_text_field_map = { |
||||
"cola": ["sentence"], |
||||
"sst2": ["sentence"], |
||||
"mrpc": ["sentence1", "sentence2"], |
||||
"qqp": ["question1", "question2"], |
||||
"stsb": ["sentence1", "sentence2"], |
||||
"mnli": ["premise", "hypothesis"], |
||||
"qnli": ["question", "sentence"], |
||||
"rte": ["sentence1", "sentence2"], |
||||
"wnli": ["sentence1", "sentence2"], |
||||
"ax": ["premise", "hypothesis"], |
||||
} |
||||
|
||||
glue_task_num_labels = { |
||||
"cola": 2, |
||||
"sst2": 2, |
||||
"mrpc": 2, |
||||
"qqp": 2, |
||||
"stsb": 1, |
||||
"mnli": 3, |
||||
"qnli": 2, |
||||
"rte": 2, |
||||
"wnli": 2, |
||||
"ax": 3, |
||||
} |
||||
|
||||
loader_columns = [ |
||||
"datasets_idx", |
||||
"input_ids", |
||||
"token_type_ids", |
||||
"attention_mask", |
||||
"start_positions", |
||||
"end_positions", |
||||
"labels", |
||||
] |
||||
|
||||
def __init__( |
||||
self, |
||||
model_name_or_path: str, |
||||
plugin: DPPluginBase = None, |
||||
task_name: str = "mrpc", |
||||
max_seq_length: int = 128, |
||||
train_batch_size: int = 32, |
||||
eval_batch_size: int = 32, |
||||
**kwargs, |
||||
): |
||||
super().__init__() |
||||
self.model_name_or_path = model_name_or_path |
||||
self.task_name = task_name |
||||
self.max_seq_length = max_seq_length |
||||
self.train_batch_size = train_batch_size |
||||
self.eval_batch_size = eval_batch_size |
||||
self.plugin = plugin |
||||
|
||||
self.text_fields = self.task_text_field_map[task_name] |
||||
self.num_labels = self.glue_task_num_labels[task_name] |
||||
self.tokenizer: PreTrainedTokenizer = AutoTokenizer.from_pretrained(self.model_name_or_path, use_fast=True) |
||||
self.setup() |
||||
|
||||
def setup(self): |
||||
self.dataset = datasets.load_dataset("glue", self.task_name) |
||||
|
||||
for split in self.dataset.keys(): |
||||
self.dataset[split] = self.dataset[split].map( |
||||
self.convert_to_features, |
||||
batched=True, |
||||
remove_columns=["label"], |
||||
) |
||||
self.columns = [c for c in self.dataset[split].column_names if c in self.loader_columns] |
||||
self.dataset[split].set_format(type="torch", columns=self.columns) |
||||
|
||||
self.eval_splits = [x for x in self.dataset.keys() if "validation" in x] |
||||
|
||||
def prepare_data(self): |
||||
datasets.load_dataset("glue", self.task_name) |
||||
AutoTokenizer.from_pretrained(self.model_name_or_path, use_fast=True) |
||||
|
||||
def train_dataloader(self): |
||||
if self.plugin == None: |
||||
return self.native_prepare_dataloader(self.dataset["train"], |
||||
batch_size=self.train_batch_size, |
||||
shuffle=True, |
||||
drop_last=True) |
||||
return self.plugin.prepare_dataloader(self.dataset["train"], |
||||
batch_size=self.train_batch_size, |
||||
shuffle=True, |
||||
drop_last=True) |
||||
|
||||
def val_dataloader(self): |
||||
if self.plugin == None: |
||||
return self.native_prepare_dataloader(self.dataset["validation"], batch_size=self.eval_batch_size) |
||||
if len(self.eval_splits) == 1: |
||||
return self.plugin.prepare_dataloader(self.dataset["validation"], batch_size=self.eval_batch_size) |
||||
elif len(self.eval_splits) > 1: |
||||
return [ |
||||
self.plugin.prepare_dataloader(self.dataset[x], batch_size=self.eval_batch_size) |
||||
for x in self.eval_splits |
||||
] |
||||
|
||||
def test_dataloader(self): |
||||
if self.plugin == None: |
||||
return self.native_prepare_dataloader(self.dataset["test"], batch_size=self.train_batch_size) |
||||
if len(self.eval_splits) == 1: |
||||
return self.plugin.prepare_dataloader(self.dataset["test"], batch_size=self.eval_batch_size) |
||||
elif len(self.eval_splits) > 1: |
||||
return [ |
||||
self.plugin.prepare_dataloader(self.dataset[x], batch_size=self.eval_batch_size) |
||||
for x in self.eval_splits |
||||
] |
||||
|
||||
def convert_to_features(self, example_batch): |
||||
|
||||
# Either encode single sentence or sentence pairs |
||||
if len(self.text_fields) > 1: |
||||
texts_or_text_pairs = list(zip(example_batch[self.text_fields[0]], example_batch[self.text_fields[1]])) |
||||
else: |
||||
texts_or_text_pairs = example_batch[self.text_fields[0]] |
||||
|
||||
# Tokenize the text/text pairs |
||||
features = self.tokenizer.batch_encode_plus(texts_or_text_pairs, |
||||
max_length=self.max_seq_length, |
||||
padding='max_length', |
||||
truncation=True) |
||||
|
||||
# Rename label to labels to make it easier to pass to model forward |
||||
features["labels"] = example_batch["label"] |
||||
|
||||
return features |
||||
|
||||
def native_prepare_dataloader(self, dataset, batch_size, shuffle=False, drop_last=False, pin_memory=False): |
||||
|
||||
return DataLoader(dataset, |
||||
batch_size=batch_size, |
||||
sampler=None, |
||||
shuffle=shuffle, |
||||
drop_last=drop_last, |
||||
pin_memory=pin_memory) |
@ -0,0 +1,154 @@
|
||||
import argparse |
||||
import math |
||||
from typing import Any, List, Union |
||||
|
||||
import evaluate |
||||
import torch |
||||
import torch.distributed as dist |
||||
from data import GLUEDataBuilder |
||||
from torch import nn |
||||
from torch.optim import Adam, AdamW, Optimizer |
||||
from torch.utils._pytree import tree_map |
||||
from torch.utils.data import DataLoader |
||||
from tqdm import tqdm |
||||
from transformers import BertConfig, BertForSequenceClassification, get_linear_schedule_with_warmup |
||||
|
||||
import colossalai |
||||
from colossalai.cluster import DistCoordinator |
||||
from colossalai.nn.optimizer import HybridAdam |
||||
from colossalai.shardformer import ShardConfig, ShardFormer |
||||
|
||||
|
||||
def to_device(x: Any, device: torch.device) -> Any: |
||||
|
||||
def _to(t: Any): |
||||
if isinstance(t, torch.Tensor): |
||||
return t.to(device) |
||||
return t |
||||
|
||||
return tree_map(_to, x) |
||||
|
||||
|
||||
def train(args): |
||||
colossalai.launch_from_torch(config={}, seed=42) |
||||
coordinator = DistCoordinator() |
||||
|
||||
# prepare for data and dataset |
||||
data_builder = GLUEDataBuilder(model_name_or_path=args.pretrain, |
||||
task_name=args.task, |
||||
train_batch_size=args.batch_size, |
||||
eval_batch_size=args.batch_size) |
||||
train_dataloader = data_builder.train_dataloader() |
||||
test_dataloader = data_builder.test_dataloader() |
||||
|
||||
if args.model == "bert": |
||||
cfg = BertConfig.from_pretrained(args.pretrain, num_labels=data_builder.num_labels) |
||||
model = BertForSequenceClassification.from_pretrained(args.pretrain, config=cfg) |
||||
|
||||
model.to(torch.cuda.current_device()) |
||||
|
||||
# if multiple GPUs, shard the model |
||||
if dist.get_world_size() > 1: |
||||
shard_config = ShardConfig(enable_fused_normalization=args.fused_layernorm) |
||||
shard_former = ShardFormer(shard_config=shard_config) |
||||
model = shard_former.shard_model(model) |
||||
|
||||
optim = Adam(model.parameters(), lr=args.lr) |
||||
num_update_steps_per_epoch = len(train_dataloader) // args.accumulation_steps |
||||
max_steps = math.ceil(args.max_epochs * num_update_steps_per_epoch) |
||||
lr_scheduler = get_linear_schedule_with_warmup( |
||||
optim, |
||||
num_warmup_steps=math.ceil(max_steps * args.warmup_fraction), |
||||
num_training_steps=max_steps, |
||||
) |
||||
fit(model, optim, lr_scheduler, train_dataloader, args.max_epochs, args.accumulation_steps, args.batch_size, |
||||
coordinator) |
||||
results = evaluate_model(model, test_dataloader, data_builder.num_labels, args.task, data_builder.eval_splits, |
||||
coordinator) |
||||
if coordinator.is_master(): |
||||
print(results) |
||||
if args.target_f1 is not None and 'f1' in results: |
||||
assert results['f1'] >= args.target_f1, f'f1 score {results["f1"]} is lower than target {args.target_f1}' |
||||
|
||||
|
||||
def fit(model: nn.Module, optimizer: Optimizer, scheduler, train_dataloader, max_epochs, accumulation_steps, batch_size, |
||||
coordinator): |
||||
step_bar = tqdm(range(len(train_dataloader) // accumulation_steps * max_epochs), |
||||
desc=f'steps', |
||||
disable=not coordinator.is_master()) |
||||
total_loss = 0 |
||||
for epoch in range(max_epochs): |
||||
model.train() |
||||
for batch_id, batch in enumerate(train_dataloader): |
||||
batch = to_device(batch, torch.cuda.current_device()) |
||||
outputs = model(**batch) |
||||
loss = outputs.loss |
||||
loss = loss / accumulation_steps |
||||
loss.backward() |
||||
total_loss += loss.item() |
||||
if (batch_id + 1) % accumulation_steps == 0: |
||||
optimizer.step() |
||||
scheduler.step() |
||||
optimizer.zero_grad() |
||||
step_bar.set_postfix({ |
||||
'epoch': epoch, |
||||
'loss': total_loss / batch_size, |
||||
'lr': scheduler.get_last_lr()[0] |
||||
}) |
||||
total_loss = 0 |
||||
step_bar.update() |
||||
|
||||
|
||||
# evaluate |
||||
@torch.no_grad() |
||||
def evaluate_model(model: nn.Module, test_dataloader: Union[DataLoader, List[DataLoader]], num_labels: int, |
||||
task_name: str, eval_splits: List[str], coordinator: DistCoordinator): |
||||
metric = evaluate.load("glue", task_name, process_id=coordinator.rank, num_process=coordinator.world_size) |
||||
model.eval() |
||||
|
||||
def evaluate_subset(dataloader: DataLoader): |
||||
accum_loss = torch.zeros(1, device=torch.cuda.current_device()) |
||||
for batch in dataloader: |
||||
batch = to_device(batch, torch.cuda.current_device()) |
||||
outputs = model(**batch) |
||||
val_loss, logits = outputs[:2] |
||||
accum_loss.add_(val_loss) |
||||
|
||||
if num_labels > 1: |
||||
preds = torch.argmax(logits, axis=1) |
||||
elif num_labels == 1: |
||||
preds = logits.squeeze() |
||||
|
||||
labels = batch["labels"] |
||||
metric.add_batch(predictions=preds, references=labels) |
||||
|
||||
results = metric.compute() |
||||
if coordinator.is_master(): |
||||
results['loss'] = accum_loss.item() / (len(dataloader) * dataloader.batch_size) |
||||
return results |
||||
|
||||
if isinstance(test_dataloader, DataLoader): |
||||
return evaluate_subset(test_dataloader) |
||||
else: |
||||
assert len(test_dataloader) == len(eval_splits) |
||||
final_results = {} |
||||
for split, sub_loader in zip(eval_splits, test_dataloader): |
||||
results = evaluate_subset(sub_loader) |
||||
final_results.update({f'{k}_{split}': v for k, v in results.items()}) |
||||
return final_results |
||||
|
||||
|
||||
if __name__ == '__main__': |
||||
parser = argparse.ArgumentParser() |
||||
parser.add_argument('-t', '--task', default='mrpc', help="GLUE task to run") |
||||
parser.add_argument('--model', type=str, default="bert") |
||||
parser.add_argument('--pretrain', type=str, default="bert-base-uncased") |
||||
parser.add_argument('--max_epochs', type=int, default=1) |
||||
parser.add_argument('--batch_size', type=int, default=4) |
||||
parser.add_argument('--lr', type=float, default=2.4e-5) |
||||
parser.add_argument('--fused_layernorm', type=bool, default=False) |
||||
parser.add_argument('--accumulation_steps', type=int, default=8) |
||||
parser.add_argument('--warmup_fraction', type=float, default=0.03) |
||||
parser.add_argument('--target_f1', type=float, default=None) |
||||
args = parser.parse_args() |
||||
train(args) |
@ -0,0 +1,9 @@
|
||||
torchrun --standalone --nproc_per_node=4 shardformer_benchmark.py \ |
||||
--model "bert" \ |
||||
--pretrain "bert-base-uncased" \ |
||||
--max_epochs 1 \ |
||||
--batch_size 2 \ |
||||
--lr 2.4e-5 \ |
||||
--fused_layernorm False \ |
||||
--accumulation_steps 8 \ |
||||
--warmup_fraction 0.03 |
Loading…
Reference in new issue