mirror of https://github.com/hpcaitech/ColossalAI
[shardformer] write an shardformer example with bert finetuning (#4126)
* [shardformer] add benchmark of shardformer * [shardformer] add benchmark of shardformerpull/4157/head
parent
ae035d305d
commit
7f9b30335b
|
@ -15,6 +15,7 @@
|
|||
- [Policy](#policy)
|
||||
- [Model Sharder](#model-sharder)
|
||||
- [User-facing API](#user-facing-api)
|
||||
- [Shardformer Convergence](#shardformer-convergence)
|
||||
|
||||
|
||||
## 🔗 Introduction
|
||||
|
@ -324,3 +325,15 @@ class ShardFormer:
|
|||
"""
|
||||
...
|
||||
```
|
||||
|
||||
### Shardformer Convergence
|
||||
|
||||
To validate that training the model using shardformers does not impact its convergence. We [fine-tuned the BERT model](./examples/shardformer_benchmark.py) using both shardformer and non-shardformer approaches. We compared the accuracy, loss, F1 score of the training results.
|
||||
|
||||
| accuracy | f1 | loss | GPU number | model shard |
|
||||
| :-----: | :----: | :----: | :----: | :----: |
|
||||
| 0.82594 | 0.87441 | 0.09913 | 4 | True |
|
||||
| 0.81884 | 0.87299 | 0.10120 | 2 | True |
|
||||
| 0.81855 | 0.87124 | 0.10357 | 1 | False |
|
||||
|
||||
Overall, the results demonstrate that using shardformers during model training does not affect the convergence.
|
||||
|
|
|
@ -0,0 +1,146 @@
|
|||
import datasets
|
||||
from torch.utils.data import DataLoader
|
||||
from transformers import AutoTokenizer, PreTrainedTokenizer
|
||||
|
||||
from colossalai.booster.plugin.dp_plugin_base import DPPluginBase
|
||||
|
||||
|
||||
class GLUEDataBuilder:
|
||||
|
||||
task_text_field_map = {
|
||||
"cola": ["sentence"],
|
||||
"sst2": ["sentence"],
|
||||
"mrpc": ["sentence1", "sentence2"],
|
||||
"qqp": ["question1", "question2"],
|
||||
"stsb": ["sentence1", "sentence2"],
|
||||
"mnli": ["premise", "hypothesis"],
|
||||
"qnli": ["question", "sentence"],
|
||||
"rte": ["sentence1", "sentence2"],
|
||||
"wnli": ["sentence1", "sentence2"],
|
||||
"ax": ["premise", "hypothesis"],
|
||||
}
|
||||
|
||||
glue_task_num_labels = {
|
||||
"cola": 2,
|
||||
"sst2": 2,
|
||||
"mrpc": 2,
|
||||
"qqp": 2,
|
||||
"stsb": 1,
|
||||
"mnli": 3,
|
||||
"qnli": 2,
|
||||
"rte": 2,
|
||||
"wnli": 2,
|
||||
"ax": 3,
|
||||
}
|
||||
|
||||
loader_columns = [
|
||||
"datasets_idx",
|
||||
"input_ids",
|
||||
"token_type_ids",
|
||||
"attention_mask",
|
||||
"start_positions",
|
||||
"end_positions",
|
||||
"labels",
|
||||
]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name_or_path: str,
|
||||
plugin: DPPluginBase = None,
|
||||
task_name: str = "mrpc",
|
||||
max_seq_length: int = 128,
|
||||
train_batch_size: int = 32,
|
||||
eval_batch_size: int = 32,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
self.model_name_or_path = model_name_or_path
|
||||
self.task_name = task_name
|
||||
self.max_seq_length = max_seq_length
|
||||
self.train_batch_size = train_batch_size
|
||||
self.eval_batch_size = eval_batch_size
|
||||
self.plugin = plugin
|
||||
|
||||
self.text_fields = self.task_text_field_map[task_name]
|
||||
self.num_labels = self.glue_task_num_labels[task_name]
|
||||
self.tokenizer: PreTrainedTokenizer = AutoTokenizer.from_pretrained(self.model_name_or_path, use_fast=True)
|
||||
self.setup()
|
||||
|
||||
def setup(self):
|
||||
self.dataset = datasets.load_dataset("glue", self.task_name)
|
||||
|
||||
for split in self.dataset.keys():
|
||||
self.dataset[split] = self.dataset[split].map(
|
||||
self.convert_to_features,
|
||||
batched=True,
|
||||
remove_columns=["label"],
|
||||
)
|
||||
self.columns = [c for c in self.dataset[split].column_names if c in self.loader_columns]
|
||||
self.dataset[split].set_format(type="torch", columns=self.columns)
|
||||
|
||||
self.eval_splits = [x for x in self.dataset.keys() if "validation" in x]
|
||||
|
||||
def prepare_data(self):
|
||||
datasets.load_dataset("glue", self.task_name)
|
||||
AutoTokenizer.from_pretrained(self.model_name_or_path, use_fast=True)
|
||||
|
||||
def train_dataloader(self):
|
||||
if self.plugin == None:
|
||||
return self.native_prepare_dataloader(self.dataset["train"],
|
||||
batch_size=self.train_batch_size,
|
||||
shuffle=True,
|
||||
drop_last=True)
|
||||
return self.plugin.prepare_dataloader(self.dataset["train"],
|
||||
batch_size=self.train_batch_size,
|
||||
shuffle=True,
|
||||
drop_last=True)
|
||||
|
||||
def val_dataloader(self):
|
||||
if self.plugin == None:
|
||||
return self.native_prepare_dataloader(self.dataset["validation"], batch_size=self.eval_batch_size)
|
||||
if len(self.eval_splits) == 1:
|
||||
return self.plugin.prepare_dataloader(self.dataset["validation"], batch_size=self.eval_batch_size)
|
||||
elif len(self.eval_splits) > 1:
|
||||
return [
|
||||
self.plugin.prepare_dataloader(self.dataset[x], batch_size=self.eval_batch_size)
|
||||
for x in self.eval_splits
|
||||
]
|
||||
|
||||
def test_dataloader(self):
|
||||
if self.plugin == None:
|
||||
return self.native_prepare_dataloader(self.dataset["test"], batch_size=self.train_batch_size)
|
||||
if len(self.eval_splits) == 1:
|
||||
return self.plugin.prepare_dataloader(self.dataset["test"], batch_size=self.eval_batch_size)
|
||||
elif len(self.eval_splits) > 1:
|
||||
return [
|
||||
self.plugin.prepare_dataloader(self.dataset[x], batch_size=self.eval_batch_size)
|
||||
for x in self.eval_splits
|
||||
]
|
||||
|
||||
def convert_to_features(self, example_batch):
|
||||
|
||||
# Either encode single sentence or sentence pairs
|
||||
if len(self.text_fields) > 1:
|
||||
texts_or_text_pairs = list(zip(example_batch[self.text_fields[0]], example_batch[self.text_fields[1]]))
|
||||
else:
|
||||
texts_or_text_pairs = example_batch[self.text_fields[0]]
|
||||
|
||||
# Tokenize the text/text pairs
|
||||
features = self.tokenizer.batch_encode_plus(texts_or_text_pairs,
|
||||
max_length=self.max_seq_length,
|
||||
padding='max_length',
|
||||
truncation=True)
|
||||
|
||||
# Rename label to labels to make it easier to pass to model forward
|
||||
features["labels"] = example_batch["label"]
|
||||
|
||||
return features
|
||||
|
||||
def native_prepare_dataloader(self, dataset, batch_size, shuffle=False, drop_last=False, pin_memory=False):
|
||||
|
||||
return DataLoader(dataset,
|
||||
batch_size=batch_size,
|
||||
sampler=None,
|
||||
shuffle=shuffle,
|
||||
drop_last=drop_last,
|
||||
pin_memory=pin_memory)
|
|
@ -0,0 +1,154 @@
|
|||
import argparse
|
||||
import math
|
||||
from typing import Any, List, Union
|
||||
|
||||
import evaluate
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from data import GLUEDataBuilder
|
||||
from torch import nn
|
||||
from torch.optim import Adam, AdamW, Optimizer
|
||||
from torch.utils._pytree import tree_map
|
||||
from torch.utils.data import DataLoader
|
||||
from tqdm import tqdm
|
||||
from transformers import BertConfig, BertForSequenceClassification, get_linear_schedule_with_warmup
|
||||
|
||||
import colossalai
|
||||
from colossalai.cluster import DistCoordinator
|
||||
from colossalai.nn.optimizer import HybridAdam
|
||||
from colossalai.shardformer import ShardConfig, ShardFormer
|
||||
|
||||
|
||||
def to_device(x: Any, device: torch.device) -> Any:
|
||||
|
||||
def _to(t: Any):
|
||||
if isinstance(t, torch.Tensor):
|
||||
return t.to(device)
|
||||
return t
|
||||
|
||||
return tree_map(_to, x)
|
||||
|
||||
|
||||
def train(args):
|
||||
colossalai.launch_from_torch(config={}, seed=42)
|
||||
coordinator = DistCoordinator()
|
||||
|
||||
# prepare for data and dataset
|
||||
data_builder = GLUEDataBuilder(model_name_or_path=args.pretrain,
|
||||
task_name=args.task,
|
||||
train_batch_size=args.batch_size,
|
||||
eval_batch_size=args.batch_size)
|
||||
train_dataloader = data_builder.train_dataloader()
|
||||
test_dataloader = data_builder.test_dataloader()
|
||||
|
||||
if args.model == "bert":
|
||||
cfg = BertConfig.from_pretrained(args.pretrain, num_labels=data_builder.num_labels)
|
||||
model = BertForSequenceClassification.from_pretrained(args.pretrain, config=cfg)
|
||||
|
||||
model.to(torch.cuda.current_device())
|
||||
|
||||
# if multiple GPUs, shard the model
|
||||
if dist.get_world_size() > 1:
|
||||
shard_config = ShardConfig(enable_fused_normalization=args.fused_layernorm)
|
||||
shard_former = ShardFormer(shard_config=shard_config)
|
||||
model = shard_former.shard_model(model)
|
||||
|
||||
optim = Adam(model.parameters(), lr=args.lr)
|
||||
num_update_steps_per_epoch = len(train_dataloader) // args.accumulation_steps
|
||||
max_steps = math.ceil(args.max_epochs * num_update_steps_per_epoch)
|
||||
lr_scheduler = get_linear_schedule_with_warmup(
|
||||
optim,
|
||||
num_warmup_steps=math.ceil(max_steps * args.warmup_fraction),
|
||||
num_training_steps=max_steps,
|
||||
)
|
||||
fit(model, optim, lr_scheduler, train_dataloader, args.max_epochs, args.accumulation_steps, args.batch_size,
|
||||
coordinator)
|
||||
results = evaluate_model(model, test_dataloader, data_builder.num_labels, args.task, data_builder.eval_splits,
|
||||
coordinator)
|
||||
if coordinator.is_master():
|
||||
print(results)
|
||||
if args.target_f1 is not None and 'f1' in results:
|
||||
assert results['f1'] >= args.target_f1, f'f1 score {results["f1"]} is lower than target {args.target_f1}'
|
||||
|
||||
|
||||
def fit(model: nn.Module, optimizer: Optimizer, scheduler, train_dataloader, max_epochs, accumulation_steps, batch_size,
|
||||
coordinator):
|
||||
step_bar = tqdm(range(len(train_dataloader) // accumulation_steps * max_epochs),
|
||||
desc=f'steps',
|
||||
disable=not coordinator.is_master())
|
||||
total_loss = 0
|
||||
for epoch in range(max_epochs):
|
||||
model.train()
|
||||
for batch_id, batch in enumerate(train_dataloader):
|
||||
batch = to_device(batch, torch.cuda.current_device())
|
||||
outputs = model(**batch)
|
||||
loss = outputs.loss
|
||||
loss = loss / accumulation_steps
|
||||
loss.backward()
|
||||
total_loss += loss.item()
|
||||
if (batch_id + 1) % accumulation_steps == 0:
|
||||
optimizer.step()
|
||||
scheduler.step()
|
||||
optimizer.zero_grad()
|
||||
step_bar.set_postfix({
|
||||
'epoch': epoch,
|
||||
'loss': total_loss / batch_size,
|
||||
'lr': scheduler.get_last_lr()[0]
|
||||
})
|
||||
total_loss = 0
|
||||
step_bar.update()
|
||||
|
||||
|
||||
# evaluate
|
||||
@torch.no_grad()
|
||||
def evaluate_model(model: nn.Module, test_dataloader: Union[DataLoader, List[DataLoader]], num_labels: int,
|
||||
task_name: str, eval_splits: List[str], coordinator: DistCoordinator):
|
||||
metric = evaluate.load("glue", task_name, process_id=coordinator.rank, num_process=coordinator.world_size)
|
||||
model.eval()
|
||||
|
||||
def evaluate_subset(dataloader: DataLoader):
|
||||
accum_loss = torch.zeros(1, device=torch.cuda.current_device())
|
||||
for batch in dataloader:
|
||||
batch = to_device(batch, torch.cuda.current_device())
|
||||
outputs = model(**batch)
|
||||
val_loss, logits = outputs[:2]
|
||||
accum_loss.add_(val_loss)
|
||||
|
||||
if num_labels > 1:
|
||||
preds = torch.argmax(logits, axis=1)
|
||||
elif num_labels == 1:
|
||||
preds = logits.squeeze()
|
||||
|
||||
labels = batch["labels"]
|
||||
metric.add_batch(predictions=preds, references=labels)
|
||||
|
||||
results = metric.compute()
|
||||
if coordinator.is_master():
|
||||
results['loss'] = accum_loss.item() / (len(dataloader) * dataloader.batch_size)
|
||||
return results
|
||||
|
||||
if isinstance(test_dataloader, DataLoader):
|
||||
return evaluate_subset(test_dataloader)
|
||||
else:
|
||||
assert len(test_dataloader) == len(eval_splits)
|
||||
final_results = {}
|
||||
for split, sub_loader in zip(eval_splits, test_dataloader):
|
||||
results = evaluate_subset(sub_loader)
|
||||
final_results.update({f'{k}_{split}': v for k, v in results.items()})
|
||||
return final_results
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-t', '--task', default='mrpc', help="GLUE task to run")
|
||||
parser.add_argument('--model', type=str, default="bert")
|
||||
parser.add_argument('--pretrain', type=str, default="bert-base-uncased")
|
||||
parser.add_argument('--max_epochs', type=int, default=1)
|
||||
parser.add_argument('--batch_size', type=int, default=4)
|
||||
parser.add_argument('--lr', type=float, default=2.4e-5)
|
||||
parser.add_argument('--fused_layernorm', type=bool, default=False)
|
||||
parser.add_argument('--accumulation_steps', type=int, default=8)
|
||||
parser.add_argument('--warmup_fraction', type=float, default=0.03)
|
||||
parser.add_argument('--target_f1', type=float, default=None)
|
||||
args = parser.parse_args()
|
||||
train(args)
|
|
@ -0,0 +1,9 @@
|
|||
torchrun --standalone --nproc_per_node=4 shardformer_benchmark.py \
|
||||
--model "bert" \
|
||||
--pretrain "bert-base-uncased" \
|
||||
--max_epochs 1 \
|
||||
--batch_size 2 \
|
||||
--lr 2.4e-5 \
|
||||
--fused_layernorm False \
|
||||
--accumulation_steps 8 \
|
||||
--warmup_fraction 0.03
|
|
@ -17,7 +17,7 @@ class ShardConfig:
|
|||
tensor_parallel_process_group (int): The process group for tensor parallelism, defaults to None, which is the global process group.
|
||||
enable_fused_normalization (bool): Whether to use fused layernorm, default is False
|
||||
"""
|
||||
tensor_parallel_process_group: int = None
|
||||
tensor_parallel_process_group: ProcessGroup = None
|
||||
enable_fused_normalization: bool = False
|
||||
enable_all_optimization: bool = False
|
||||
|
||||
|
|
Loading…
Reference in New Issue