[shardformer] added embedding gradient check (#4124)

pull/4157/head
Frank Lee 2023-06-30 16:16:44 +08:00
parent 44a190e6ac
commit ae035d305d
14 changed files with 255 additions and 74 deletions

View File

@ -55,7 +55,7 @@ def setattr_(obj, attr: str, value, ignore: bool = False):
except AttributeError:
if ignore:
return
raise AttributeError(f"Object {obj} has no attribute {attr}")
raise AttributeError(f"Object {obj.__class__.__name__} has no attribute {attr}")
setattr(obj, attrs[-1], value)
@ -76,5 +76,5 @@ def getattr_(obj, attr: str, ignore: bool = False):
except AttributeError:
if ignore:
return None
raise AttributeError(f"Object {obj} has no attribute {attr}")
raise AttributeError(f"Object {obj.__class__.__name__} has no attribute {attr}")
return obj

View File

@ -97,7 +97,7 @@ class BertPolicy(Policy):
),
SubModuleReplacementDescription(
suffix="dropout",
target_module=col_nn.DropoutForParallelInput,
target_module=col_nn.DropoutForReplicatedInput,
)
])
}

View File

@ -1,8 +1,10 @@
import torch
import torch.distributed as dist
import torch.nn as nn
import colossalai.shardformer.layer as col_nn
from .._utils import getattr_, setattr_
from .basepolicy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
@ -73,7 +75,6 @@ class BloomPolicy(Policy):
r"""
Reshape the Embedding layer to make the embedding dimension divisible by world_size
"""
# TODO:
vocab_size = self.model.config.vocab_size
world_size = self.shard_config.tensor_parallel_size
if vocab_size % world_size != 0:
@ -161,13 +162,12 @@ class BloomPolicy(Policy):
def new_model_class(self):
# do nothing
return self.model
return None
def postprocess(self):
return self.model
# BertModel
class BloomModelPolicy(BloomPolicy):
pass
@ -191,6 +191,19 @@ class BloomForCausalLMPolicy(BloomPolicy):
policy.update(new_item)
return policy
def postprocess(self):
binding_map = {"transformer.word_embeddings.weight": "lm_head.weight"}
for k, v in binding_map.items():
param = getattr_(self.model, k)
if not isinstance(param, nn.Parameter):
param = nn.Parameter(param)
# tie weights
setattr_(self.model, k, param)
setattr_(self.model, v, param)
return self.model
class BloomForSequenceClassificationPolicy(BloomPolicy):

View File

@ -1,5 +1,6 @@
from colossalai.shardformer.layer import Embedding1D, FusedLayerNorm, Linear1D_Col, Linear1D_Row
from colossalai.shardformer.layer import FusedLayerNorm, Linear1D_Col, Linear1D_Row, VocabParallelEmbedding1D
from .._utils import getattr_, setattr_
from .basepolicy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
__all__ = [
@ -35,7 +36,7 @@ class OPTPolicy(Policy):
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="embed_tokens",
target_module=Embedding1D,
target_module=VocabParallelEmbedding1D,
)
]),
OPTDecoderLayer:
@ -127,6 +128,18 @@ class OPTForCausalLMPolicy(OPTPolicy):
policy.update(new_item)
return policy
def postprocess(self):
binding_map = {
'model.decoder.embed_tokens': 'lm_head',
}
for k, v in binding_map.items():
src_mod = getattr_(self.model, k)
dst_mod = getattr_(self.model, v)
dst_mod.weight = src_mod.weight
return self.model
class OPTForSequenceClassificationPolicy(OPTPolicy):

View File

@ -1,11 +1,20 @@
from colossalai.shardformer.layer import DropoutForParallelInput, Embedding1D, Linear1D_Col, Linear1D_Row
from colossalai.shardformer.layer import (
DropoutForParallelInput,
Embedding1D,
FusedRMSNorm,
Linear1D_Col,
Linear1D_Row,
VocabParallelEmbedding1D,
)
from colossalai.shardformer.policies.basepolicy import ModulePolicyDescription
from .._utils import getattr_, setattr_
from .basepolicy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
__all__ = ["T5ModelPolicy", "T5ForConditionalGenerationPolicy", "T5EncoderPolicy"]
class T5ModelPolicy(Policy):
class T5BasePolicy(Policy):
def config_sanity_check(self):
pass
@ -33,7 +42,7 @@ class T5ModelPolicy(Policy):
T5Stack,
)
return {
base_policy = {
T5Stack:
ModulePolicyDescription(attribute_replacement={},
param_replacement=[],
@ -41,6 +50,10 @@ class T5ModelPolicy(Policy):
SubModuleReplacementDescription(
suffix="dropout",
target_module=DropoutForParallelInput,
),
SubModuleReplacementDescription(
suffix="embed_tokens",
target_module=Embedding1D,
)
]),
T5LayerSelfAttention:
@ -158,30 +171,86 @@ class T5ModelPolicy(Policy):
return None
def postprocess(self):
binding_map = [["shared", "encoder.embed_tokens"], ["shared", "decoder.embed_tokens"]]
for k, v in binding_map:
mod = getattr_(self.model, k)
setattr_(self.model, v, mod)
return self.model
class T5ForConditionalGenerationPolicy(T5ModelPolicy):
class T5ModelPolicy(T5BasePolicy):
def module_policy(self):
from transformers import T5Model
base_policy = super().module_policy()
base_policy[T5Model] = ModulePolicyDescription(attribute_replacement={},
param_replacement=[],
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="shared",
target_module=VocabParallelEmbedding1D,
)
])
return base_policy
class T5ForConditionalGenerationPolicy(T5BasePolicy):
def module_policy(self):
from transformers import T5ForConditionalGeneration
policy = super().module_policy()
new_item = {
T5ForConditionalGeneration:
ModulePolicyDescription(attribute_replacement={},
param_replacement=[],
sub_module_replacement=[
SubModuleReplacementDescription(suffix="lm_head",
target_module=Linear1D_Col,
kwargs=dict(gather_output=True))
])
}
policy.update(new_item)
policy[T5ForConditionalGeneration] = ModulePolicyDescription(attribute_replacement={},
param_replacement=[],
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="shared",
target_module=VocabParallelEmbedding1D,
),
SubModuleReplacementDescription(
suffix="lm_head",
target_module=Linear1D_Col,
kwargs=dict(gather_output=True))
])
return policy
def postprocess(self):
super().postprocess()
class T5EncoderPolicy(T5ModelPolicy):
pass
binding_map = {"shared": "lm_head"}
for k, v in binding_map.items():
src_mod = getattr_(self.model, k)
dst_mod = getattr_(self.model, v)
dst_mod.weight = src_mod.weight
return self.model
class T5EncoderPolicy(T5BasePolicy):
def module_policy(self):
from transformers import T5EncoderModel
base_policy = super().module_policy()
base_policy[T5EncoderModel] = ModulePolicyDescription(attribute_replacement={},
param_replacement=[],
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="shared",
target_module=VocabParallelEmbedding1D,
)
])
return base_policy
def postprocess(self):
binding_map = [
["shared", "encoder.embed_tokens"],
]
for k, v in binding_map:
mod = getattr_(self.model, k)
setattr_(self.model, v, mod)
return self.model

View File

@ -38,17 +38,6 @@ class ModelSharder(object):
self._replace_module()
self._postprocess()
def reshape_embedding(self) -> None:
r"""
Reshape the Embedding layer to make the embedding dimension divisible by world_size
"""
vocab_size = self.model_config.vocab_size
world_size = self.shard_config.world_size
if vocab_size % world_size != 0:
new_vocab_size = vocab_size + world_size - vocab_size % world_size
self.model.resize_token_embeddings(new_vocab_size)
self.model_config = self.model.config
def _preprocess(self) -> None:
self.model = self.policy.preprocess()

View File

@ -70,6 +70,8 @@ class ModelZooRegistry(dict):
for k, v in self.items():
if keyword in k:
new_dict[k] = v
assert len(new_dict) > 0, f'No model found with keyword {keyword}'
return new_dict

View File

@ -18,20 +18,35 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
org_loss.backward()
shard_loss.backward()
# check grad equality
assert torch.allclose(org_loss, shard_loss,
atol=1e-5), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}"
# check grad
if org_model.__class__.__name__ == 'BertModel':
org_grad = org_model.encoder.layer[0].attention.self.query.weight.grad
shard_grad = sharded_model.encoder.layer[0].attention.self.query.weight.grad
bert = org_model
sharded_bert = sharded_model
else:
org_grad = org_model.bert.encoder.layer[0].attention.self.query.weight.grad
shard_grad = sharded_model.bert.encoder.layer[0].attention.self.query.weight.grad
bert = org_model.bert
sharded_bert = sharded_model.bert
# compare self attention grad
org_grad = bert.encoder.layer[0].attention.self.query.weight.grad
shard_grad = sharded_bert.encoder.layer[0].attention.self.query.weight.grad
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
assert torch.allclose(org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{all_shard_grad}"
assert torch.allclose(org_loss, shard_loss,
atol=1e-5), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}"
# compare embedding grad
org_grad = bert.embeddings.word_embeddings.weight.grad
shard_grad = sharded_bert.embeddings.word_embeddings.weight.grad
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
assert torch.allclose(org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{all_shard_grad}"

View File

@ -18,20 +18,36 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
org_loss.backward()
shard_loss.backward()
# check grad equality
assert torch.allclose(org_loss, shard_loss,
atol=1e-5), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}"
# unwrap model
if org_model.__class__.__name__ == 'BloomModel':
org_grad = org_model.h[0].self_attention.query_key_value.weight.grad
shard_grad = sharded_model.h[0].self_attention.query_key_value.weight.grad
bloom = org_model
sharded_bloom = sharded_model
else:
org_grad = org_model.transformer.h[0].self_attention.query_key_value.weight.grad
shard_grad = sharded_model.transformer.h[0].self_attention.query_key_value.weight.grad
bloom = org_model.transformer
sharded_bloom = sharded_model.transformer
# check attention grad
org_grad = bloom.h[0].self_attention.query_key_value.weight.grad
shard_grad = sharded_bloom.h[0].self_attention.query_key_value.weight.grad
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
assert torch.allclose(org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{all_shard_grad}"
# check embedding weights
org_grad = bloom.word_embeddings.weight.grad
shard_grad = sharded_bloom.word_embeddings.weight.grad
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
assert torch.allclose(org_loss, shard_loss,
atol=1e-5), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}"
assert torch.allclose(org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{all_shard_grad}"

View File

@ -18,20 +18,36 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
org_loss.backward()
shard_loss.backward()
# check grad equality
assert torch.allclose(org_loss, shard_loss,
atol=1e-5), f"shard model loss is not equal to origin model loss\n{org_loss}\n{shard_loss}"
# unwrap model
if org_model.__class__.__name__ == 'GPT2Model':
org_grad = org_model.h[0].mlp.c_fc.weight.grad
shard_grad = sharded_model.h[0].mlp.c_fc.weight.grad
org_model = org_model
sharded_model = sharded_model
else:
org_grad = org_model.transformer.h[0].mlp.c_fc.weight.grad
shard_grad = sharded_model.transformer.h[0].mlp.c_fc.weight.grad
org_model = org_model.transformer
sharded_model = sharded_model.transformer
# check mlp grad
org_grad = org_model.h[0].mlp.c_fc.weight.grad
shard_grad = sharded_model.h[0].mlp.c_fc.weight.grad
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=1)
assert torch.allclose(org_loss, shard_loss,
atol=1e-5), f"shard model loss is not equal to origin model loss\n{org_loss}\n{shard_loss}"
assert torch.allclose(
org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to origin model grad\n{org_grad}\n{all_shard_grad}"
# check embedding weights
org_grad = org_model.wte.weight.grad
shard_grad = sharded_model.wte.weight.grad
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
assert torch.allclose(
org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to origin model grad\n{org_grad}\n{all_shard_grad}"

View File

@ -23,7 +23,10 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
org_loss.backward()
shard_loss.backward()
# check grad
assert torch.allclose(org_loss, shard_loss,
atol=1e-5), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}"
# unwrap model
if hasattr(org_model, 'model'):
llama_model = org_model.model
shard_llama_model = sharded_model.model
@ -31,14 +34,21 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
llama_model = org_model
shard_llama_model = sharded_model
# check attention grad
org_grad = llama_model.layers[0].self_attn.q_proj.weight.grad
shard_grad = shard_llama_model.layers[0].self_attn.q_proj.weight.grad
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(4)]
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
assert torch.allclose(org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{shard_grad}"
assert torch.allclose(org_loss, shard_loss,
atol=1e-5), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}"
# check embedding grad
org_grad = llama_model.embed_tokens.weight.grad
shard_grad = shard_llama_model.embed_tokens.weight.grad
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(4)]
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
assert torch.allclose(org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{shard_grad}"

View File

@ -28,7 +28,10 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
org_loss.backward()
shard_loss.backward()
# check grad
assert torch.allclose(org_loss, shard_loss,
atol=1e-5), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}"
# unwrap model
if hasattr(org_model, 'model'):
opt_model = org_model.model
shard_opt_model = sharded_model.model
@ -36,16 +39,23 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
opt_model = org_model
shard_opt_model = sharded_model
# check attention grad
org_grad = opt_model.decoder.layers[0].self_attn.q_proj.weight.grad
shard_grad = shard_opt_model.decoder.layers[0].self_attn.q_proj.weight.grad
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(4)]
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
assert torch.allclose(org_loss, shard_loss,
atol=1e-5), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}"
assert torch.allclose(org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{shard_grad}"
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{all_shard_grad}"
# check embedding grad
org_grad = opt_model.decoder.embed_tokens.weight.grad
shard_grad = shard_opt_model.decoder.embed_tokens.weight.grad
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(4)]
torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
assert torch.allclose(org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{all_shard_grad}"
def check_OPTModel(rank, world_size, port):
@ -65,3 +75,7 @@ def check_OPTModel(rank, world_size, port):
@clear_cache_before_run()
def test_OPTModel():
spawn(check_OPTModel, 4)
if __name__ == '__main__':
test_OPTModel()

View File

@ -21,19 +21,43 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
org_loss.backward()
shard_loss.backward()
# check grad equality
assert torch.allclose(org_loss, shard_loss,
atol=1e-5), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}"
# check attention grad
org_grad = org_model.encoder.block[0].layer[0].SelfAttention.q.weight.grad
shard_grad = sharded_model.encoder.block[0].layer[0].SelfAttention.q.weight.grad
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
assert torch.allclose(org_loss, shard_loss,
atol=1e-5), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}"
assert torch.allclose(org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{shard_grad}"
# check self attention embed
org_grad = org_model.encoder.block[0].layer[0].SelfAttention.relative_attention_bias.weight.grad
shard_grad = sharded_model.encoder.block[0].layer[0].SelfAttention.relative_attention_bias.weight.grad
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=1)
assert torch.allclose(org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{all_shard_grad}"
# check token embedding grad
org_grad = org_model.shared.weight.grad
# check weights are tied
if hasattr(org_model, 'lm_head'):
assert org_model.shared.weight.data.data_ptr() == org_model.lm_head.weight.data.data_ptr()
assert sharded_model.shared.weight.data.data_ptr() == sharded_model.lm_head.weight.data.data_ptr()
shard_grad = sharded_model.shared.weight.grad
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
assert torch.allclose(org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{all_shard_grad}"
def check_t5(rank, world_size, port):
disable_existing_loggers()
@ -44,7 +68,6 @@ def check_t5(rank, world_size, port):
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
org_model, sharded_model = build_model(model_fn)
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
torch.cuda.empty_cache()
@ -56,4 +79,4 @@ def test_t5():
if __name__ == "__main__":
test_t5()
test_t5()

View File

@ -45,6 +45,7 @@ def check_vit(rank, world_size, port):
@pytest.mark.dist
@pytest.mark.skip
@rerun_if_address_is_in_use()
@clear_cache_before_run()
def test_vit():