2022-11-16 15:12:31 +00:00
|
|
|
from typing import List, Tuple
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, OperationDataType, TrainCycleItem
|
|
|
|
from colossalai.fx.profiler.memory_utils import activation_size
|
|
|
|
from colossalai.fx.profiler.opcount import flop_mapping
|
|
|
|
|
|
|
|
from ..registry import meta_register
|
|
|
|
|
|
|
|
__all__ = ["relu_meta_info"]
|
|
|
|
|
|
|
|
|
|
|
|
@meta_register.register(torch.nn.ReLU)
|
|
|
|
def relu_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
|
|
|
|
"""torch.nn.ReLU metainfo generator
|
|
|
|
The aten graph of torch.nn.ReLU is
|
|
|
|
graph():
|
|
|
|
%input_2 : [#users=1] = placeholder[target=placeholder](default=)
|
|
|
|
%relu_default : [#users=2] = call_function[target=torch.ops.aten.relu.default](args = (%input_2,), kwargs = {})
|
|
|
|
%zeros_like_default : [#users=1] = call_function[target=torch.ops.aten.zeros_like.default](args = (%relu_default,), kwargs = {dtype: None, layout: None, device: None, pin_memory: None})
|
|
|
|
%detach_default : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%relu_default,), kwargs = {})
|
|
|
|
%threshold_backward_default : [#users=1] = call_function[target=torch.ops.aten.threshold_backward.default](args = (%zeros_like_default, %detach_default, None), kwargs = {})
|
|
|
|
%detach_default_1 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%threshold_backward_default,), kwargs = {})
|
|
|
|
%detach_default_2 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_1,), kwargs = {})
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: compute cost, memory cost and forward inputs
|
|
|
|
"""
|
|
|
|
|
2022-12-20 02:31:22 +00:00
|
|
|
input_tensor = args[0].data
|
2022-11-16 15:12:31 +00:00
|
|
|
output_tensor = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data
|
2023-01-02 07:51:03 +00:00
|
|
|
is_inplace = kwargs.get("inplace", False)
|
2022-11-16 15:12:31 +00:00
|
|
|
|
|
|
|
# construct input args for forward
|
|
|
|
fwd_in_args = [input_tensor]
|
|
|
|
|
|
|
|
# construct input args for backward
|
|
|
|
bwd_in_args = [output_tensor]
|
|
|
|
|
|
|
|
# calculate cost
|
|
|
|
# the fwd op with compute cost is relu.default
|
|
|
|
# the bwd op with compute cost is threshold_backward
|
|
|
|
|
|
|
|
# calculate compute cost
|
|
|
|
fwd_compute_cost = flop_mapping[torch.ops.aten.relu.default](fwd_in_args, (output_tensor,))
|
|
|
|
bwd_compute_cost = flop_mapping[torch.ops.aten.threshold_backward.default](bwd_in_args, (input_tensor,))
|
|
|
|
compute_cost = TrainCycleItem(fwd=fwd_compute_cost, bwd=bwd_compute_cost, total=fwd_compute_cost + bwd_compute_cost)
|
|
|
|
|
|
|
|
# calculate memory cost
|
|
|
|
# NOTE: the inplace ReLU don't have forward memory cost
|
2022-12-04 07:00:16 +00:00
|
|
|
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
|
|
|
|
fwd_memory_cost = MemoryCost(
|
2023-01-02 07:51:03 +00:00
|
|
|
activation=activation_size(input_tensor) if is_inplace else activation_size([output_tensor, input_tensor]),
|
2022-12-04 07:00:16 +00:00
|
|
|
parameter=0,
|
|
|
|
temp=0,
|
|
|
|
buffer=0)
|
2022-11-16 15:12:31 +00:00
|
|
|
|
|
|
|
bwd_memory_cost = MemoryCost(activation=activation_size(input_tensor), parameter=0, temp=0, buffer=0)
|
|
|
|
|
|
|
|
# total cost is the sum of forward and backward cost
|
|
|
|
total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation,
|
|
|
|
parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter)
|
|
|
|
|
|
|
|
memory_cost = TrainCycleItem(fwd=fwd_memory_cost, bwd=bwd_memory_cost, total=total_cost)
|
|
|
|
|
2022-12-28 05:37:40 +00:00
|
|
|
# store fwd_in, fwd_buffer, fwd_out
|
|
|
|
# NOTE: It might seems a little bit weird here, we just want to align it with the older version
|
|
|
|
# of MetaInfoProp. In the future we might modify this part to make it clearer.
|
|
|
|
fwd_in = []
|
|
|
|
fwd_buffer = [torch.zeros_like(output_tensor, device='meta')]
|
|
|
|
fwd_out = [torch.zeros_like(output_tensor, device='meta')]
|
|
|
|
|
|
|
|
return compute_cost, memory_cost, fwd_in, fwd_buffer, fwd_out
|
2023-02-13 08:09:22 +00:00
|
|
|
|
|
|
|
|
|
|
|
@meta_register.register(torch.nn.Softmax)
|
|
|
|
@meta_register.register(torch.nn.functional.softmax)
|
|
|
|
def softmax_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
|
|
|
|
"""torch.nn.Softmax metainfo generator
|
|
|
|
Returns:
|
|
|
|
Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: compute cost, memory cost and forward inputs
|
|
|
|
"""
|
|
|
|
input_tensor = next(
|
|
|
|
filter(
|
|
|
|
lambda x:
|
|
|
|
(x.type == OperationDataType.ARG or x.type == OperationDataType.PARAM) and x.name != 'softmax_dim',
|
|
|
|
args)).data
|
|
|
|
output_tensor = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data
|
|
|
|
softmax_dim = next(filter(lambda x: x.name == 'softmax_dim', args)).data
|
|
|
|
|
|
|
|
# calculate cost
|
|
|
|
|
|
|
|
# calculate compute cost
|
|
|
|
fwd_compute_cost = flop_mapping[torch.ops.aten._softmax.default]([input_tensor], [output_tensor])
|
|
|
|
bwd_compute_cost = flop_mapping[torch.ops.aten._softmax_backward_data.default]([output_tensor], [input_tensor])
|
|
|
|
|
|
|
|
compute_cost = TrainCycleItem(fwd=fwd_compute_cost, bwd=bwd_compute_cost, total=fwd_compute_cost + bwd_compute_cost)
|
|
|
|
|
|
|
|
# calculate memory cost
|
|
|
|
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
|
|
|
|
fwd_memory_cost = MemoryCost(activation=activation_size([input_tensor, output_tensor]),
|
|
|
|
parameter=0,
|
|
|
|
temp=0,
|
|
|
|
buffer=0)
|
|
|
|
bwd_memory_cost = MemoryCost(activation=activation_size(input_tensor),
|
|
|
|
parameter=0,
|
|
|
|
temp=activation_size(input_tensor),
|
|
|
|
buffer=0)
|
|
|
|
|
|
|
|
# total cost is the sum of forward and backward cost
|
|
|
|
total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation,
|
|
|
|
parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter,
|
|
|
|
temp=fwd_memory_cost.temp + bwd_memory_cost.temp,
|
|
|
|
buffer=fwd_memory_cost.buffer + bwd_memory_cost.buffer)
|
|
|
|
|
|
|
|
memory_cost = TrainCycleItem(fwd=fwd_memory_cost, bwd=bwd_memory_cost, total=total_cost)
|
|
|
|
|
|
|
|
# store fwd_in, fwd_buffer, fwd_out
|
|
|
|
fwd_in = []
|
|
|
|
fwd_buffer = [torch.zeros_like(output_tensor, device='meta')]
|
|
|
|
fwd_out = [torch.zeros_like(output_tensor, device='meta')]
|
|
|
|
|
|
|
|
return compute_cost, memory_cost, fwd_in, fwd_buffer, fwd_out
|