ColossalAI/colossalai/auto_parallel/meta_profiler/meta_registry/activation.py

125 lines
6.1 KiB
Python
Raw Normal View History

from typing import List, Tuple
import torch
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, OperationDataType, TrainCycleItem
from colossalai.fx.profiler.memory_utils import activation_size
from colossalai.fx.profiler.opcount import flop_mapping
from ..registry import meta_register
__all__ = ["relu_meta_info"]
@meta_register.register(torch.nn.ReLU)
def relu_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
"""torch.nn.ReLU metainfo generator
The aten graph of torch.nn.ReLU is
graph():
%input_2 : [#users=1] = placeholder[target=placeholder](default=)
%relu_default : [#users=2] = call_function[target=torch.ops.aten.relu.default](args = (%input_2,), kwargs = {})
%zeros_like_default : [#users=1] = call_function[target=torch.ops.aten.zeros_like.default](args = (%relu_default,), kwargs = {dtype: None, layout: None, device: None, pin_memory: None})
%detach_default : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%relu_default,), kwargs = {})
%threshold_backward_default : [#users=1] = call_function[target=torch.ops.aten.threshold_backward.default](args = (%zeros_like_default, %detach_default, None), kwargs = {})
%detach_default_1 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%threshold_backward_default,), kwargs = {})
%detach_default_2 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_1,), kwargs = {})
Returns:
Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: compute cost, memory cost and forward inputs
"""
input_tensor = args[0].data
output_tensor = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data
is_inplace = kwargs.get("inplace", False)
# construct input args for forward
fwd_in_args = [input_tensor]
# construct input args for backward
bwd_in_args = [output_tensor]
# calculate cost
# the fwd op with compute cost is relu.default
# the bwd op with compute cost is threshold_backward
# calculate compute cost
fwd_compute_cost = flop_mapping[torch.ops.aten.relu.default](fwd_in_args, (output_tensor,))
bwd_compute_cost = flop_mapping[torch.ops.aten.threshold_backward.default](bwd_in_args, (input_tensor,))
compute_cost = TrainCycleItem(fwd=fwd_compute_cost, bwd=bwd_compute_cost, total=fwd_compute_cost + bwd_compute_cost)
# calculate memory cost
# NOTE: the inplace ReLU don't have forward memory cost
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
fwd_memory_cost = MemoryCost(
activation=activation_size(input_tensor) if is_inplace else activation_size([output_tensor, input_tensor]),
parameter=0,
temp=0,
buffer=0)
bwd_memory_cost = MemoryCost(activation=activation_size(input_tensor), parameter=0, temp=0, buffer=0)
# total cost is the sum of forward and backward cost
total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation,
parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter)
memory_cost = TrainCycleItem(fwd=fwd_memory_cost, bwd=bwd_memory_cost, total=total_cost)
[autoparallel] Attach input, buffer and output tensor to MetaInfo class (#2162) * [fx] metainfo class for auto parallel * [fx] add unit test for linear metainfo * [fx] fix bwd param for linear * [fx] modify unit test * [fx] modify unit test * [fx] modify import * [fx] modify import * [fx] modify import * [fx] move meta profiler to auto parallel * [fx] add conv metainfo class * [fx] restore profiler * [fx] restore meta profiler * [autoparallel] modify unit test * [fx] modify unit test * [autoparallel] add batchnorm metainfo class * [autoparallel] fix batchnorm unit test function declaration * [fx] restore profiler * [fx] add relu metainfo class * [fx] restore profiler * [autoparallel] modify metainfo input * [autoparallel] add pooling metainfo * [autoparallel] add F.linear metainfo generator * [autoparallel] add binary elementwise metainfo * [fx] recover profiler * [autoparallel] fix forward memory calculation * [autoparallel] modify constants.py * [autoparallel] remove redundant print * [autoparallel] add F.conv metainfo * [autoparallel] linear fix * [autoparallel] memory estimation for communication actions * [autoparallel] fix docstring * [autoparallel] fix variables name * [autoparallel] attach tensor to metainfo class * [autoparallel] fix dangerous try except * [autoparallel] attach memory cost to shape consistency node * [autoparallel] attach shape consistency node's metainfo to the node * [autoparallel] remove todo in shape consistency memory estimation * [autoparallel] fix the annotation
2022-12-28 05:37:40 +00:00
# store fwd_in, fwd_buffer, fwd_out
# NOTE: It might seems a little bit weird here, we just want to align it with the older version
# of MetaInfoProp. In the future we might modify this part to make it clearer.
fwd_in = []
fwd_buffer = [torch.zeros_like(output_tensor, device='meta')]
fwd_out = [torch.zeros_like(output_tensor, device='meta')]
return compute_cost, memory_cost, fwd_in, fwd_buffer, fwd_out
@meta_register.register(torch.nn.Softmax)
@meta_register.register(torch.nn.functional.softmax)
def softmax_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
"""torch.nn.Softmax metainfo generator
Returns:
Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: compute cost, memory cost and forward inputs
"""
input_tensor = next(
filter(
lambda x:
(x.type == OperationDataType.ARG or x.type == OperationDataType.PARAM) and x.name != 'softmax_dim',
args)).data
output_tensor = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data
softmax_dim = next(filter(lambda x: x.name == 'softmax_dim', args)).data
# calculate cost
# calculate compute cost
fwd_compute_cost = flop_mapping[torch.ops.aten._softmax.default]([input_tensor], [output_tensor])
bwd_compute_cost = flop_mapping[torch.ops.aten._softmax_backward_data.default]([output_tensor], [input_tensor])
compute_cost = TrainCycleItem(fwd=fwd_compute_cost, bwd=bwd_compute_cost, total=fwd_compute_cost + bwd_compute_cost)
# calculate memory cost
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
fwd_memory_cost = MemoryCost(activation=activation_size([input_tensor, output_tensor]),
parameter=0,
temp=0,
buffer=0)
bwd_memory_cost = MemoryCost(activation=activation_size(input_tensor),
parameter=0,
temp=activation_size(input_tensor),
buffer=0)
# total cost is the sum of forward and backward cost
total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation,
parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter,
temp=fwd_memory_cost.temp + bwd_memory_cost.temp,
buffer=fwd_memory_cost.buffer + bwd_memory_cost.buffer)
memory_cost = TrainCycleItem(fwd=fwd_memory_cost, bwd=bwd_memory_cost, total=total_cost)
# store fwd_in, fwd_buffer, fwd_out
fwd_in = []
fwd_buffer = [torch.zeros_like(output_tensor, device='meta')]
fwd_out = [torch.zeros_like(output_tensor, device='meta')]
return compute_cost, memory_cost, fwd_in, fwd_buffer, fwd_out