Browse Source

[autoparallel] patch torch.flatten metainfo for autoparallel (#2247)

* [autoparallel] patch torch.flatten
pull/2262/head
Boyuan Yao 2 years ago committed by GitHub
parent
commit
c8c79102f0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 4
      colossalai/auto_parallel/meta_profiler/meta_registry/activation.py
  2. 6
      colossalai/auto_parallel/meta_profiler/meta_registry/pooling.py

4
colossalai/auto_parallel/meta_profiler/meta_registry/activation.py

@ -30,7 +30,7 @@ def relu_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, Lis
input_tensor = args[0].data
output_tensor = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data
inplace = kwargs.get("inplace", False)
is_inplace = kwargs.get("inplace", False)
# construct input args for forward
fwd_in_args = [input_tensor]
@ -51,7 +51,7 @@ def relu_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, Lis
# NOTE: the inplace ReLU don't have forward memory cost
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
fwd_memory_cost = MemoryCost(
activation=activation_size(input_tensor) if inplace else activation_size([output_tensor, input_tensor]),
activation=activation_size(input_tensor) if is_inplace else activation_size([output_tensor, input_tensor]),
parameter=0,
temp=0,
buffer=0)

6
colossalai/auto_parallel/meta_profiler/meta_registry/pooling.py

@ -14,6 +14,7 @@ __all__ = ["avgpool_meta_info", "maxpool_meta_info"]
@meta_register.register(torch.nn.AdaptiveAvgPool1d)
@meta_register.register(torch.nn.AdaptiveAvgPool2d)
@meta_register.register(torch.nn.AdaptiveAvgPool3d)
@meta_register.register(torch.flatten)
def avgpool_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
"""Meta info for AdaptiveAvgPool
The aten graph of AdaptiveAvgPool is
@ -32,6 +33,7 @@ def avgpool_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem,
input_tensor = args[0].data
output_tensor = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data
is_inplace = kwargs.get("inplace", False)
# construct forward args for flop mapping
fwd_in_args = [input_tensor]
@ -51,8 +53,8 @@ def avgpool_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem,
compute_cost = TrainCycleItem(fwd=fwd_compute_cost, bwd=bwd_compute_cost, total=fwd_compute_cost + bwd_compute_cost)
# calculate memory cost
fwd_mem_cost = MemoryCost(activation=activation_size(output_tensor))
bwd_mem_cost = MemoryCost(activation=activation_size(input_tensor))
fwd_mem_cost = MemoryCost() if is_inplace else MemoryCost(activation=activation_size(output_tensor))
bwd_mem_cost = MemoryCost() if is_inplace else MemoryCost(activation=activation_size(input_tensor))
# total cost
total_mem_cost = MemoryCost(activation=fwd_mem_cost.activation + bwd_mem_cost.activation)

Loading…
Cancel
Save