from typing import List, Tuple import torch from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, OperationDataType, TrainCycleItem from colossalai.fx.profiler.memory_utils import activation_size from colossalai.fx.profiler.opcount import flop_mapping from ..registry import meta_register __all__ = ["relu_meta_info"] @meta_register.register(torch.nn.ReLU) def relu_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: """torch.nn.ReLU metainfo generator The aten graph of torch.nn.ReLU is graph(): %input_2 : [#users=1] = placeholder[target=placeholder](default=) %relu_default : [#users=2] = call_function[target=torch.ops.aten.relu.default](args = (%input_2,), kwargs = {}) %zeros_like_default : [#users=1] = call_function[target=torch.ops.aten.zeros_like.default](args = (%relu_default,), kwargs = {dtype: None, layout: None, device: None, pin_memory: None}) %detach_default : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%relu_default,), kwargs = {}) %threshold_backward_default : [#users=1] = call_function[target=torch.ops.aten.threshold_backward.default](args = (%zeros_like_default, %detach_default, None), kwargs = {}) %detach_default_1 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%threshold_backward_default,), kwargs = {}) %detach_default_2 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_1,), kwargs = {}) Returns: Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: compute cost, memory cost and forward inputs """ input_tensor = args[0].data output_tensor = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data is_inplace = kwargs.get("inplace", False) # construct input args for forward fwd_in_args = [input_tensor] # construct input args for backward bwd_in_args = [output_tensor] # calculate cost # the fwd op with compute cost is relu.default # the bwd op with compute cost is threshold_backward # calculate compute cost fwd_compute_cost = flop_mapping[torch.ops.aten.relu.default](fwd_in_args, (output_tensor,)) bwd_compute_cost = flop_mapping[torch.ops.aten.threshold_backward.default](bwd_in_args, (input_tensor,)) compute_cost = TrainCycleItem(fwd=fwd_compute_cost, bwd=bwd_compute_cost, total=fwd_compute_cost + bwd_compute_cost) # calculate memory cost # NOTE: the inplace ReLU don't have forward memory cost # NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward fwd_memory_cost = MemoryCost( activation=activation_size(input_tensor) if is_inplace else activation_size([output_tensor, input_tensor]), parameter=0, temp=0, buffer=0) bwd_memory_cost = MemoryCost(activation=activation_size(input_tensor), parameter=0, temp=0, buffer=0) # total cost is the sum of forward and backward cost total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation, parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter) memory_cost = TrainCycleItem(fwd=fwd_memory_cost, bwd=bwd_memory_cost, total=total_cost) # store fwd_in, fwd_buffer, fwd_out # NOTE: It might seems a little bit weird here, we just want to align it with the older version # of MetaInfoProp. In the future we might modify this part to make it clearer. fwd_in = [] fwd_buffer = [torch.zeros_like(output_tensor, device='meta')] fwd_out = [torch.zeros_like(output_tensor, device='meta')] return compute_cost, memory_cost, fwd_in, fwd_buffer, fwd_out @meta_register.register(torch.nn.Softmax) @meta_register.register(torch.nn.functional.softmax) def softmax_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: """torch.nn.Softmax metainfo generator Returns: Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: compute cost, memory cost and forward inputs """ input_tensor = next( filter( lambda x: (x.type == OperationDataType.ARG or x.type == OperationDataType.PARAM) and x.name != 'softmax_dim', args)).data output_tensor = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data softmax_dim = next(filter(lambda x: x.name == 'softmax_dim', args)).data # calculate cost # calculate compute cost fwd_compute_cost = flop_mapping[torch.ops.aten._softmax.default]([input_tensor], [output_tensor]) bwd_compute_cost = flop_mapping[torch.ops.aten._softmax_backward_data.default]([output_tensor], [input_tensor]) compute_cost = TrainCycleItem(fwd=fwd_compute_cost, bwd=bwd_compute_cost, total=fwd_compute_cost + bwd_compute_cost) # calculate memory cost # NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward fwd_memory_cost = MemoryCost(activation=activation_size([input_tensor, output_tensor]), parameter=0, temp=0, buffer=0) bwd_memory_cost = MemoryCost(activation=activation_size(input_tensor), parameter=0, temp=activation_size(input_tensor), buffer=0) # total cost is the sum of forward and backward cost total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation, parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter, temp=fwd_memory_cost.temp + bwd_memory_cost.temp, buffer=fwd_memory_cost.buffer + bwd_memory_cost.buffer) memory_cost = TrainCycleItem(fwd=fwd_memory_cost, bwd=bwd_memory_cost, total=total_cost) # store fwd_in, fwd_buffer, fwd_out fwd_in = [] fwd_buffer = [torch.zeros_like(output_tensor, device='meta')] fwd_out = [torch.zeros_like(output_tensor, device='meta')] return compute_cost, memory_cost, fwd_in, fwd_buffer, fwd_out