2022-08-09 08:26:12 +00:00
|
|
|
import torch
|
|
|
|
import torch.nn.functional as F
|
|
|
|
from typing import List, Optional, Iterator, Tuple
|
|
|
|
|
|
|
|
from .base_embedding import BaseEmbeddingBag
|
2022-08-24 09:37:22 +00:00
|
|
|
from .cache_mgr import CachedParamMgr, EvictionStrategy
|
2022-08-09 08:26:12 +00:00
|
|
|
from torch.nn.parameter import Parameter
|
|
|
|
|
|
|
|
|
|
|
|
class FreqAwareEmbeddingBag(BaseEmbeddingBag):
|
|
|
|
|
2022-08-24 09:37:22 +00:00
|
|
|
def __init__(self,
|
|
|
|
num_embeddings,
|
|
|
|
embedding_dim,
|
|
|
|
padding_idx=None,
|
|
|
|
max_norm=None,
|
|
|
|
norm_type=2.,
|
|
|
|
scale_grad_by_freq=False,
|
|
|
|
sparse=False,
|
|
|
|
_weight=None,
|
|
|
|
mode='mean',
|
|
|
|
include_last_offset=False,
|
|
|
|
dtype=None,
|
|
|
|
device=None,
|
|
|
|
cuda_row_num=0,
|
|
|
|
ids_freq_mapping=None,
|
|
|
|
warmup_ratio=0.7,
|
|
|
|
buffer_size=50_000,
|
|
|
|
pin_weight=False,
|
|
|
|
evict_strategy: EvictionStrategy = EvictionStrategy.DATASET):
|
2022-08-12 07:55:46 +00:00
|
|
|
super(FreqAwareEmbeddingBag, self).__init__(num_embeddings, embedding_dim, padding_idx, max_norm, norm_type,
|
|
|
|
scale_grad_by_freq, sparse, mode, include_last_offset)
|
|
|
|
|
2022-08-24 09:37:22 +00:00
|
|
|
self.evict_strategy = evict_strategy
|
2022-08-12 07:55:46 +00:00
|
|
|
if _weight is None:
|
|
|
|
_weight = self._weight_alloc(dtype, device)
|
|
|
|
|
|
|
|
# configure weight & cache
|
2022-08-23 09:38:24 +00:00
|
|
|
self._preprocess(_weight, cuda_row_num, ids_freq_mapping, warmup_ratio, buffer_size, pin_weight)
|
2022-08-12 07:55:46 +00:00
|
|
|
|
|
|
|
def _weight_alloc(self, dtype, device):
|
2022-08-23 09:38:24 +00:00
|
|
|
weight = torch.empty(self.num_embeddings, self.embedding_dim, dtype=dtype, device=device)
|
2022-08-12 07:55:46 +00:00
|
|
|
with torch.no_grad():
|
|
|
|
weight.data.uniform_(-1 / self.num_embeddings, 1 / self.num_embeddings)
|
|
|
|
if self.padding_idx is not None:
|
|
|
|
weight[self.padding_idx].fill_(0)
|
|
|
|
return weight
|
|
|
|
|
|
|
|
def _preprocess(self,
|
|
|
|
weight,
|
|
|
|
cuda_row_num: int,
|
|
|
|
ids_freq_mapping: Optional[List[int]] = None,
|
|
|
|
warmup_ratio=0.7,
|
2022-08-23 09:38:24 +00:00
|
|
|
buffer_size=50_000,
|
|
|
|
pin_weight=False):
|
2022-08-09 08:26:12 +00:00
|
|
|
"""
|
|
|
|
Called after initialized.
|
|
|
|
Reorder the weight rows according to the ids_freq_mapping.
|
|
|
|
Then, let the weights of the Module be managed by a CachedParamMgr.
|
2022-08-16 01:21:05 +00:00
|
|
|
|
2022-08-09 08:26:12 +00:00
|
|
|
Args:
|
|
|
|
cuda_row_num (int): number of rows can be hosted in CUDA memory
|
|
|
|
ids_freq_mapping (List[int]): a list, idx is id number, value is freq
|
|
|
|
warmup_ratio (float): the amount of rows preloaded in cuda cache
|
|
|
|
"""
|
2022-08-24 09:37:22 +00:00
|
|
|
self.cache_weight_mgr = CachedParamMgr(weight,
|
|
|
|
cuda_row_num,
|
|
|
|
buffer_size,
|
|
|
|
pin_weight,
|
|
|
|
evict_strategy=self.evict_strategy)
|
2022-08-09 08:26:12 +00:00
|
|
|
self.cache_weight_mgr.reorder(ids_freq_mapping, warmup_ratio)
|
|
|
|
|
2022-08-23 09:38:24 +00:00
|
|
|
def forward(self, indices, offsets=None, per_sample_weights=None, shape_hook=None):
|
2022-08-09 08:26:12 +00:00
|
|
|
with torch.no_grad():
|
|
|
|
reorder_ids = self.cache_weight_mgr.prepare_ids(indices)
|
|
|
|
|
|
|
|
embeddings = F.embedding_bag(reorder_ids, self.cache_weight_mgr.cuda_cached_weight, offsets, self.max_norm,
|
|
|
|
self.norm_type, self.scale_grad_by_freq, self.mode, self.sparse,
|
|
|
|
per_sample_weights, self.include_last_offset, self.padding_idx)
|
2022-08-23 09:38:24 +00:00
|
|
|
if shape_hook is not None:
|
|
|
|
embeddings = shape_hook(embeddings)
|
2022-08-09 08:26:12 +00:00
|
|
|
return embeddings
|
|
|
|
|
|
|
|
@property
|
|
|
|
def weight(self):
|
2022-08-12 07:55:46 +00:00
|
|
|
return self.cache_weight_mgr.weight
|
2022-08-09 08:26:12 +00:00
|
|
|
|
|
|
|
def named_parameters(self, prefix: str = '', recurse: bool = True) -> Iterator[Tuple[str, Parameter]]:
|
|
|
|
yield 'weight', self.cache_weight_mgr.cuda_cached_weight
|
|
|
|
|
|
|
|
def parameters(self, recurse: bool = True) -> Iterator[Parameter]:
|
|
|
|
yield self.cache_weight_mgr.cuda_cached_weight
|
|
|
|
|
2022-08-12 07:55:46 +00:00
|
|
|
|
|
|
|
############################# Perf Log ###################################
|
|
|
|
|
2022-08-09 08:26:12 +00:00
|
|
|
@property
|
|
|
|
def num_hits_history(self):
|
|
|
|
return self.cache_weight_mgr.num_hits_history
|
|
|
|
|
|
|
|
@property
|
|
|
|
def num_miss_history(self):
|
|
|
|
return self.cache_weight_mgr.num_miss_history
|
|
|
|
|
|
|
|
@property
|
|
|
|
def num_write_back_history(self):
|
|
|
|
return self.cache_weight_mgr.num_write_back_history
|
|
|
|
|
|
|
|
@property
|
|
|
|
def swap_in_bandwidth(self):
|
|
|
|
if self.cache_weight_mgr._cpu_to_cuda_numel > 0:
|
|
|
|
return self.cache_weight_mgr._cpu_to_cuda_numel * self.cache_weight_mgr.elem_size_in_byte / 1e6 / \
|
|
|
|
self.cache_weight_mgr._cpu_to_cuda_elpase
|
|
|
|
else:
|
|
|
|
return 0
|
|
|
|
|
|
|
|
@property
|
|
|
|
def swap_out_bandwidth(self):
|
|
|
|
if self.cache_weight_mgr._cuda_to_cpu_numel > 0:
|
|
|
|
return self.cache_weight_mgr._cuda_to_cpu_numel * self.cache_weight_mgr.elem_size_in_byte / 1e6 / \
|
|
|
|
self.cache_weight_mgr._cuda_to_cpu_elapse
|
|
|
|
return 0
|
|
|
|
|
|
|
|
@property
|
|
|
|
def input_id_percent_in_load_chunk(self):
|
|
|
|
return 0 # np.mean(self.cache_weight_mgr.input_id_percent_in_load_chunk) * 100
|