[FAW] init an LFU implementation for FAW (#1488)

pull/1493/head
Jiarui Fang 2 years ago committed by GitHub
parent 32efe8e740
commit cde7b8a5b8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -3,10 +3,10 @@ from .linear import ColoLinear
from .embedding import ColoEmbedding
from .module_utils import register_colo_module, is_colo_module, get_colo_module, init_colo_module, check_colo_module
from .cache_embedding import FreqAwareEmbeddingBag, ParallelFreqAwareEmbeddingBag, CachedParamMgr, LimitBuffIndexCopyer
from .cache_embedding import FreqAwareEmbeddingBag, ParallelFreqAwareEmbeddingBag, CachedParamMgr, LimitBuffIndexCopyer, EvictionStrategy
__all__ = [
'ColoModule', 'register_colo_module', 'is_colo_module', 'get_colo_module', 'init_colo_module', 'check_colo_module',
'ColoLinear', 'ColoEmbedding', 'FreqAwareEmbeddingBag', 'ParallelFreqAwareEmbeddingBag', 'CachedParamMgr',
'LimitBuffIndexCopyer'
'LimitBuffIndexCopyer', 'EvictionStrategy'
]

@ -1,6 +1,9 @@
from .cache_mgr import CachedParamMgr
from .cache_mgr import CachedParamMgr, EvictionStrategy
from .copyer import LimitBuffIndexCopyer
from .freq_aware_embedding import FreqAwareEmbeddingBag
from .parallel_freq_aware_embedding import ParallelFreqAwareEmbeddingBag
__all__ = ['CachedParamMgr', 'LimitBuffIndexCopyer', 'FreqAwareEmbeddingBag', 'ParallelFreqAwareEmbeddingBag']
__all__ = [
'CachedParamMgr', 'LimitBuffIndexCopyer', 'FreqAwareEmbeddingBag', 'ParallelFreqAwareEmbeddingBag',
'EvictionStrategy'
]

@ -4,6 +4,12 @@ from torch.profiler import record_function
from typing import List, Optional
from contexttimer import Timer
from .copyer import LimitBuffIndexCopyer
from enum import Enum
class EvictionStrategy(Enum):
LFU = 1
DATASET = 2
class CachedParamMgr(torch.nn.Module):
@ -18,7 +24,8 @@ class CachedParamMgr(torch.nn.Module):
weight: torch.Tensor,
cuda_row_num: int = 0,
buffer_size: int = 50_000,
pin_weight=False) -> None:
pin_weight=False,
evict_strategy=EvictionStrategy.DATASET) -> None:
super(CachedParamMgr, self).__init__()
self.buffer_size = buffer_size
self.num_embeddings, self.embedding_dim = weight.shape
@ -38,6 +45,51 @@ class CachedParamMgr(torch.nn.Module):
self.input_id_percent_in_load_chunk = []
self._reset_comm_stats()
self._evict_strategy = evict_strategy
if self._evict_strategy == EvictionStrategy.LFU:
# cpu_row_idx -> frequency, freq of the cpu rows.
# evict the minimal freq value row in cuda cache.
self.register_buffer("freq_cnter",
torch.empty(self.num_embeddings, device=torch.cuda.current_device(),
dtype=torch.long).fill_(0),
persistent=False)
def _update_freq_cnter(self, cpu_row_idxs: torch.Tensor) -> None:
"""_update_freq_cnter
Update the frequency valude w.r.t. the cpu_row_ids in self.freq_cnter.
Args:
cpu_row_idxs (torch.Tensor): a list of indices of cpu weight.
"""
if self._evict_strategy == EvictionStrategy.LFU:
self.freq_cnter[cpu_row_idxs] += 1
def _find_evict_gpu_idxs(self, evict_num: int) -> torch.Tensor:
"""_find_evict_gpu_idxs
Find the gpu idxs to be evicted, according to their freq.
Args:
evict_num (int): how many rows has to be evicted
Returns:
torch.Tensor: a list tensor (1D), contains the gpu_row_idxs.
"""
if self._evict_strategy == EvictionStrategy.LFU:
# find the minimal evict_num freq entries in cached_idx_map
evict_gpu_row_idxs = torch.argsort(self.freq_cnter[self.cached_idx_map])[:evict_num]
return self.cached_idx_map[evict_gpu_row_idxs]
elif self._evict_strategy == EvictionStrategy.DATASET:
# cached_idx_map itself implies the priority of eviction.
# The value of self.cached_idx_map represents cpu_row_idx.
# The larger it is, the less frequently it will appear in the dataset,
# and the higher its eviction priority will be.
return torch.argsort(self.cached_idx_map, descending=True)[:evict_num]
else:
raise TypeError
def _init_weight(self, weight):
if self.cuda_row_num > 0:
# Enable cache with introducing auxiliary data structures
@ -220,6 +272,10 @@ class CachedParamMgr(torch.nn.Module):
# new ids chunk_offset + offset_in_chunk
with record_function("(zhg) embed idx -> cache chunk id"):
gpu_row_idxs = self._id_to_cached_cuda_id(ids)
# update for LFU.
self._update_freq_cnter(cpu_row_idxs)
return gpu_row_idxs
def _reset_comm_stats(self):
@ -234,6 +290,7 @@ class CachedParamMgr(torch.nn.Module):
@torch.no_grad()
def _prepare_rows_on_cuda(self, cpu_row_idxs: torch.Tensor) -> None:
"""prepare rows in cpu_row_idxs on CUDA memory
Args:
cpu_row_idxs (torch.Tensor): the chunks to be placed on CUDA
"""
@ -245,7 +302,9 @@ class CachedParamMgr(torch.nn.Module):
invalid_idxs = torch.nonzero(mask_cpu_row_idx).squeeze(1)
self.cached_idx_map.index_fill_(0, invalid_idxs, -2)
evict_gpu_row_idxs = torch.argsort(self.cached_idx_map, descending=True)[:evict_num]
evict_gpu_row_idxs = self._find_evict_gpu_idxs(evict_num)
self.cached_idx_map.index_copy_(0, invalid_idxs, backup_idxs)
evict_info = self.cached_idx_map[evict_gpu_row_idxs]
@ -291,8 +350,16 @@ class CachedParamMgr(torch.nn.Module):
self._cpu_to_cuda_numel += weight_size
# print(f"admit embedding weight: {weight_size*self.elem_size_in_byte/1e6:.2f} MB")
def _find_free_cuda_row(self) -> int:
if self._cuda_available_row_num == 0:
return -1
candidates = torch.nonzero(self.cached_idx_map == -1).squeeze(1)
return candidates[0].item()
def _evict(self) -> int:
"""
deprecated
evict one chunk from cuda to cpu.
Returns:
(int) : the slot id be evicted.
@ -329,15 +396,11 @@ class CachedParamMgr(torch.nn.Module):
# self.num_write_back_history[-1] += 1
return max_cpu_row_idx
def _find_free_cuda_row(self) -> int:
if self._cuda_available_row_num == 0:
return -1
candidates = torch.nonzero(self.cached_idx_map == -1).squeeze(1)
return candidates[0].item()
@torch.no_grad()
def _admit(self, row_id: int):
"""
deprecated
move in row_id to CUDA
Args:

@ -3,35 +3,35 @@ import torch.nn.functional as F
from typing import List, Optional, Iterator, Tuple
from .base_embedding import BaseEmbeddingBag
from .cache_mgr import CachedParamMgr
from .cache_mgr import CachedParamMgr, EvictionStrategy
from torch.nn.parameter import Parameter
class FreqAwareEmbeddingBag(BaseEmbeddingBag):
def __init__(
self,
num_embeddings,
embedding_dim,
padding_idx=None,
max_norm=None,
norm_type=2.,
scale_grad_by_freq=False,
sparse=False,
_weight=None,
mode='mean',
include_last_offset=False,
dtype=None,
device=None,
cuda_row_num=0,
ids_freq_mapping=None,
warmup_ratio=0.7,
buffer_size=50_000,
pin_weight=False,
):
def __init__(self,
num_embeddings,
embedding_dim,
padding_idx=None,
max_norm=None,
norm_type=2.,
scale_grad_by_freq=False,
sparse=False,
_weight=None,
mode='mean',
include_last_offset=False,
dtype=None,
device=None,
cuda_row_num=0,
ids_freq_mapping=None,
warmup_ratio=0.7,
buffer_size=50_000,
pin_weight=False,
evict_strategy: EvictionStrategy = EvictionStrategy.DATASET):
super(FreqAwareEmbeddingBag, self).__init__(num_embeddings, embedding_dim, padding_idx, max_norm, norm_type,
scale_grad_by_freq, sparse, mode, include_last_offset)
self.evict_strategy = evict_strategy
if _weight is None:
_weight = self._weight_alloc(dtype, device)
@ -63,7 +63,11 @@ class FreqAwareEmbeddingBag(BaseEmbeddingBag):
ids_freq_mapping (List[int]): a list, idx is id number, value is freq
warmup_ratio (float): the amount of rows preloaded in cuda cache
"""
self.cache_weight_mgr = CachedParamMgr(weight, cuda_row_num, buffer_size, pin_weight)
self.cache_weight_mgr = CachedParamMgr(weight,
cuda_row_num,
buffer_size,
pin_weight,
evict_strategy=self.evict_strategy)
self.cache_weight_mgr.reorder(ids_freq_mapping, warmup_ratio)
def forward(self, indices, offsets=None, per_sample_weights=None, shape_hook=None):

@ -12,7 +12,7 @@ from colossalai.utils import free_port
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.tensor import ColoParameter, ProcessGroup, ShardSpec, ComputePattern, ComputeSpec, \
ColoTensor, ColoTensorSpec
from colossalai.nn.parallel.layers import CachedParamMgr, FreqAwareEmbeddingBag, ParallelFreqAwareEmbeddingBag
from colossalai.nn.parallel.layers import CachedParamMgr, FreqAwareEmbeddingBag, ParallelFreqAwareEmbeddingBag, EvictionStrategy
NUM_EMBED, EMBED_DIM = 10, 8
BATCH_SIZE = 8
@ -41,6 +41,7 @@ def synthesize_1d_sparse_feature(
return indices, offsets
@pytest.mark.skip
def test_cachemgr():
model = torch.nn.EmbeddingBag(10000, 128)
# 10 chunks, 5 in cuda
@ -98,14 +99,17 @@ def test_reorder_with_freq():
f"offset in chunk: {offset_in_chunk}, mgr: {mgr_offsets}"
def test_freq_aware_embed():
@pytest.mark.parametrize('use_LFU', [True, False])
def test_freq_aware_embed(use_LFU: bool):
device = torch.device('cuda', 0)
evict_strategy = EvictionStrategy.LFU if use_LFU else EvictionStrategy.DATASET
model = FreqAwareEmbeddingBag(NUM_EMBED,
EMBED_DIM,
mode='mean',
include_last_offset=True,
cuda_row_num=BATCH_SIZE * 2,
ids_freq_mapping=None).to(device)
ids_freq_mapping=None,
evict_strategy=evict_strategy).to(device)
assert model.weight.shape[0] == NUM_EMBED
ref_model = torch.nn.EmbeddingBag.from_pretrained(model.weight.detach().to(device),
@ -231,6 +235,5 @@ def test_parallel_freq_aware_embed(world_size):
if __name__ == '__main__':
test_cachemgr()
# test_freq_aware_embed()
test_freq_aware_embed(True)
# test_parallel_freq_aware_embed(2)

Loading…
Cancel
Save