ColossalAI/colossalai/nn/parallel/layers/cache_embedding/freq_aware_embedding.py

123 lines
4.5 KiB
Python
Raw Normal View History

2022-08-09 08:26:12 +00:00
import torch
import torch.nn.functional as F
from typing import List, Optional, Iterator, Tuple
from .base_embedding import BaseEmbeddingBag
from .cache_mgr import CachedParamMgr
from torch.nn.parameter import Parameter
class FreqAwareEmbeddingBag(BaseEmbeddingBag):
def __init__(
self,
num_embeddings,
embedding_dim,
padding_idx=None,
max_norm=None,
norm_type=2.,
scale_grad_by_freq=False,
sparse=False,
_weight=None,
mode='mean',
include_last_offset=False,
dtype=None,
device=None,
cuda_row_num=0,
ids_freq_mapping=None,
warmup_ratio=0.7,
buffer_size=50_000,
pin_weight=False,
):
super(FreqAwareEmbeddingBag, self).__init__(num_embeddings, embedding_dim, padding_idx, max_norm, norm_type,
scale_grad_by_freq, sparse, mode, include_last_offset)
if _weight is None:
_weight = self._weight_alloc(dtype, device)
# configure weight & cache
self._preprocess(_weight, cuda_row_num, ids_freq_mapping, warmup_ratio, buffer_size, pin_weight)
def _weight_alloc(self, dtype, device):
weight = torch.empty(self.num_embeddings, self.embedding_dim, dtype=dtype, device=device)
with torch.no_grad():
weight.data.uniform_(-1 / self.num_embeddings, 1 / self.num_embeddings)
if self.padding_idx is not None:
weight[self.padding_idx].fill_(0)
return weight
def _preprocess(self,
weight,
cuda_row_num: int,
ids_freq_mapping: Optional[List[int]] = None,
warmup_ratio=0.7,
buffer_size=50_000,
pin_weight=False):
2022-08-09 08:26:12 +00:00
"""
Called after initialized.
Reorder the weight rows according to the ids_freq_mapping.
Then, let the weights of the Module be managed by a CachedParamMgr.
2022-08-09 08:26:12 +00:00
Args:
cuda_row_num (int): number of rows can be hosted in CUDA memory
ids_freq_mapping (List[int]): a list, idx is id number, value is freq
warmup_ratio (float): the amount of rows preloaded in cuda cache
"""
self.cache_weight_mgr = CachedParamMgr(weight, cuda_row_num, buffer_size, pin_weight)
2022-08-09 08:26:12 +00:00
self.cache_weight_mgr.reorder(ids_freq_mapping, warmup_ratio)
def forward(self, indices, offsets=None, per_sample_weights=None, shape_hook=None):
2022-08-09 08:26:12 +00:00
with torch.no_grad():
reorder_ids = self.cache_weight_mgr.prepare_ids(indices)
embeddings = F.embedding_bag(reorder_ids, self.cache_weight_mgr.cuda_cached_weight, offsets, self.max_norm,
self.norm_type, self.scale_grad_by_freq, self.mode, self.sparse,
per_sample_weights, self.include_last_offset, self.padding_idx)
if shape_hook is not None:
embeddings = shape_hook(embeddings)
2022-08-09 08:26:12 +00:00
return embeddings
@property
def weight(self):
return self.cache_weight_mgr.weight
2022-08-09 08:26:12 +00:00
def named_parameters(self, prefix: str = '', recurse: bool = True) -> Iterator[Tuple[str, Parameter]]:
yield 'weight', self.cache_weight_mgr.cuda_cached_weight
def parameters(self, recurse: bool = True) -> Iterator[Parameter]:
yield self.cache_weight_mgr.cuda_cached_weight
############################# Perf Log ###################################
2022-08-09 08:26:12 +00:00
@property
def num_hits_history(self):
return self.cache_weight_mgr.num_hits_history
@property
def num_miss_history(self):
return self.cache_weight_mgr.num_miss_history
@property
def num_write_back_history(self):
return self.cache_weight_mgr.num_write_back_history
@property
def swap_in_bandwidth(self):
if self.cache_weight_mgr._cpu_to_cuda_numel > 0:
return self.cache_weight_mgr._cpu_to_cuda_numel * self.cache_weight_mgr.elem_size_in_byte / 1e6 / \
self.cache_weight_mgr._cpu_to_cuda_elpase
else:
return 0
@property
def swap_out_bandwidth(self):
if self.cache_weight_mgr._cuda_to_cpu_numel > 0:
return self.cache_weight_mgr._cuda_to_cpu_numel * self.cache_weight_mgr.elem_size_in_byte / 1e6 / \
self.cache_weight_mgr._cuda_to_cpu_elapse
return 0
@property
def input_id_percent_in_load_chunk(self):
return 0 # np.mean(self.cache_weight_mgr.input_id_percent_in_load_chunk) * 100