ColossalAI/README-zh-Hans.md

249 lines
8.4 KiB
Markdown
Raw Normal View History

2022-02-18 08:28:37 +00:00
# Colossal-AI
2022-03-11 05:53:38 +00:00
<div id="top" align="center">
2022-02-18 08:28:37 +00:00
2022-03-11 05:53:38 +00:00
[![logo](https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/Colossal-AI_logo.png)](https://www.colossalai.org/)
2022-04-12 05:41:56 +00:00
一个整合高效并行技术的 AI 大模型训练系统。
2022-02-18 08:28:37 +00:00
<h3> <a href="https://arxiv.org/abs/2110.14883"> 论文 </a> |
<a href="https://www.colossalai.org/"> 文档 </a> |
2022-03-11 05:53:38 +00:00
<a href="https://github.com/hpcaitech/ColossalAI-Examples"> 例程 </a> |
2022-02-18 08:28:37 +00:00
<a href="https://github.com/hpcaitech/ColossalAI/discussions"> 论坛 </a> |
2022-03-11 05:53:38 +00:00
<a href="https://medium.com/@hpcaitech"> 博客 </a></h3>
2022-02-18 08:28:37 +00:00
2022-03-13 01:11:48 +00:00
[![Build](https://github.com/hpcaitech/ColossalAI/actions/workflows/build.yml/badge.svg)](https://github.com/hpcaitech/ColossalAI/actions/workflows/build.yml)
2022-02-18 08:28:37 +00:00
[![Documentation](https://readthedocs.org/projects/colossalai/badge/?version=latest)](https://colossalai.readthedocs.io/en/latest/?badge=latest)
[![CodeFactor](https://www.codefactor.io/repository/github/hpcaitech/colossalai/badge)](https://www.codefactor.io/repository/github/hpcaitech/colossalai)
2022-03-14 09:07:01 +00:00
[![HuggingFace badge](https://img.shields.io/badge/%F0%9F%A4%97HuggingFace-Join-yellow)](https://huggingface.co/hpcai-tech)
2022-03-04 10:04:51 +00:00
[![slack badge](https://img.shields.io/badge/Slack-join-blueviolet?logo=slack&amp)](https://join.slack.com/t/colossalaiworkspace/shared_invite/zt-z7b26eeb-CBp7jouvu~r0~lcFzX832w)
2022-03-11 05:53:38 +00:00
[![WeChat badge](https://img.shields.io/badge/微信-加入-green?logo=wechat&amp)](https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/WeChat.png)
2022-02-18 08:28:37 +00:00
| [English](README.md) | [中文](README-zh-Hans.md) |
2022-03-11 05:53:38 +00:00
2022-02-18 08:28:37 +00:00
</div>
2022-03-11 05:53:38 +00:00
## 目录
<ul>
2022-04-12 05:41:56 +00:00
<li><a href="#为何选择-Colossal-AI">为何选择 Colossal-AI</a> </li>
2022-03-11 05:53:38 +00:00
<li><a href="#特点">特点</a> </li>
<li>
<a href="#并行样例展示">并行样例展示</a>
2022-03-11 05:53:38 +00:00
<ul>
<li><a href="#ViT">ViT</a></li>
<li><a href="#GPT-3">GPT-3</a></li>
<li><a href="#GPT-2">GPT-2</a></li>
<li><a href="#BERT">BERT</a></li>
2022-04-08 10:42:12 +00:00
<li><a href="#PaLM">PaLM</a></li>
2022-03-11 05:53:38 +00:00
</ul>
</li>
<li>
<a href="#单GPU样例展示">单GPU样例展示</a>
<ul>
<li><a href="#GPT-2-Single">GPT-2</a></li>
<li><a href="#PaLM-Single">PaLM</a></li>
</ul>
</li>
2022-03-11 05:53:38 +00:00
<li>
<a href="#安装">安装</a>
<ul>
<li><a href="#PyPI">PyPI</a></li>
<li><a href="#从源代码安装">从源代码安装</a></li>
</ul>
</li>
<li><a href="#使用-Docker">使用 Docker</a></li>
<li><a href="#社区">社区</a></li>
<li><a href="#做出贡献">做出贡献</a></li>
<li><a href="#快速预览">快速预览</a></li>
<ul>
<li><a href="#几行代码开启分布式训练">几行代码开启分布式训练</a></li>
<li><a href="#构建一个简单的2维并行模型">构建一个简单的2维并行模型</a></li>
</ul>
<li><a href="#引用我们">引用我们</a></li>
</ul>
2022-02-18 08:28:37 +00:00
2022-04-12 05:41:56 +00:00
## 为何选择 Colossal-AI
<div align="center">
<a href="https://youtu.be/KnXSfjqkKN0">
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/JamesDemmel_Colossal-AI.png" width="600" />
</a>
James Demmel 教授 (加州大学伯克利分校): Colossal-AI 让分布式训练高效、易用、可扩展。
</div>
<p align="right">(<a href="#top">返回顶端</a>)</p>
2022-02-18 08:28:37 +00:00
## 特点
2022-04-12 05:41:56 +00:00
Colossal-AI 为您提供了一系列并行训练组件。我们的目标是让您的分布式 AI 模型训练像普通的单 GPU 模型一样简单。我们提供的友好工具可以让您在几行代码内快速开始分布式训练。
2022-02-18 08:28:37 +00:00
2022-04-14 13:04:51 +00:00
- 并行化策略
- 数据并行
- 流水线并行
- 1维, [2维](https://arxiv.org/abs/2104.05343), [2.5维](https://arxiv.org/abs/2105.14500), [3维](https://arxiv.org/abs/2105.14450) 张量并行
- [序列并行](https://arxiv.org/abs/2105.13120)
- [零冗余优化器 (ZeRO)](https://arxiv.org/abs/2108.05818)
- 异构内存管理
- [PatrickStar](https://arxiv.org/abs/2108.05818)
- 使用友好
- 基于参数文件的并行化
2022-03-11 05:53:38 +00:00
<p align="right">(<a href="#top">返回顶端</a>)</p>
## 并行样例展示
2022-02-18 08:28:37 +00:00
### ViT
2022-04-14 13:04:51 +00:00
<p align="center">
2022-03-11 05:53:38 +00:00
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/ViT.png" width="450" />
2022-04-14 13:04:51 +00:00
</p>
- 14倍批大小和5倍训练速度张量并行=64
2022-02-18 08:28:37 +00:00
### GPT-3
2022-04-14 13:04:51 +00:00
<p align="center">
2022-03-11 05:53:38 +00:00
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/GPT3.png" width=700/>
2022-04-14 13:04:51 +00:00
</p>
2022-02-18 08:28:37 +00:00
- 释放 50% GPU 资源占用, 或 10.7% 加速
### GPT-2
2022-03-11 05:53:38 +00:00
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/GPT2.png" width=800/>
2022-04-12 05:41:56 +00:00
- 降低11倍 GPU 显存占用,或超线性扩展(张量并行)
2022-04-04 05:47:43 +00:00
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/(updated)GPT-2.png" width=800>
2022-04-04 05:47:43 +00:00
- 用相同的硬件条件训练24倍大的模型
- 超3倍的吞吐量
2022-02-18 08:28:37 +00:00
### BERT
2022-03-11 05:53:38 +00:00
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/BERT.png" width=800/>
2022-02-18 08:28:37 +00:00
- 2倍训练速度或1.5倍序列长度
2022-02-18 08:28:37 +00:00
2022-04-08 10:26:59 +00:00
### PaLM
- [PaLM-colossalai](https://github.com/hpcaitech/PaLM-colossalai): 可扩展的谷歌 Pathways Language Model ([PaLM](https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html)) 实现。
2022-02-18 08:28:37 +00:00
请访问我们的[文档和教程](https://www.colossalai.org/)以了解详情。
2022-03-11 05:53:38 +00:00
<p align="right">(<a href="#top">返回顶端</a>)</p>
2022-02-18 08:28:37 +00:00
## 单GPU样例展示
2022-02-18 08:28:37 +00:00
### GPT-2
<p id="GPT-2-Single" align="center">
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/GPT2-GPU1.png" width=450/>
</p>
2022-02-18 08:28:37 +00:00
- 用相同的硬件条件训练20倍大的模型
2022-02-18 08:28:37 +00:00
### PaLM
<p id="PaLM-Single" align="center">
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/PaLM-GPU1.png" width=450/>
</p>
2022-02-18 08:28:37 +00:00
- 用相同的硬件条件训练34倍大的模型
<p align="right">(<a href="#top">back to top</a>)</p>
## 安装
### 从官方安装
2022-02-18 08:28:37 +00:00
您可以访问我们[下载](/download)页面来安装Colossal-AI在这个页面上发布的版本都预编译了CUDA扩展。
2022-02-18 08:28:37 +00:00
### 从源安装
> 此文档将与版本库的主分支保持一致。如果您遇到任何问题,欢迎给我们提 issue :)
2022-02-18 08:28:37 +00:00
```shell
git clone https://github.com/hpcaitech/ColossalAI.git
cd ColossalAI
# install dependency
2022-02-18 08:28:37 +00:00
pip install -r requirements/requirements.txt
# install colossalai
2022-02-18 08:28:37 +00:00
pip install .
```
如果您不想安装和启用 CUDA 内核融合(使用融合优化器时强制安装):
2022-02-18 08:28:37 +00:00
```shell
NO_CUDA_EXT=1 pip install .
2022-02-18 08:28:37 +00:00
```
2022-03-11 05:53:38 +00:00
<p align="right">(<a href="#top">返回顶端</a>)</p>
2022-02-18 08:28:37 +00:00
## 使用 Docker
2022-04-12 05:41:56 +00:00
运行以下命令从我们提供的 docker 文件中建立 docker 镜像。
2022-02-18 08:28:37 +00:00
```bash
cd ColossalAI
docker build -t colossalai ./docker
```
2022-04-12 05:41:56 +00:00
运行以下命令从以交互式启动 docker 镜像.
2022-02-18 08:28:37 +00:00
```bash
docker run -ti --gpus all --rm --ipc=host colossalai bash
```
2022-03-11 05:53:38 +00:00
<p align="right">(<a href="#top">返回顶端</a>)</p>
2022-03-04 10:04:51 +00:00
## 社区
欢迎通过[论坛](https://github.com/hpcaitech/ColossalAI/discussions),
[Slack](https://join.slack.com/t/colossalaiworkspace/shared_invite/zt-z7b26eeb-CBp7jouvu~r0~lcFzX832w),
2022-04-12 05:41:56 +00:00
或[微信](https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/WeChat.png "qrcode")加入 Colossal-AI 社区,与我们分享你的建议和问题。
2022-03-04 10:04:51 +00:00
2022-02-18 08:28:37 +00:00
## 做出贡献
欢迎为该项目做出贡献,请参阅[贡献指南](./CONTRIBUTING.md)。
2022-03-04 10:04:51 +00:00
真诚感谢所有贡献者!
<a href="https://github.com/hpcaitech/ColossalAI/graphs/contributors"><img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/contributor_avatar.png" width="800px"></a>
*贡献者头像的展示顺序是随机的。*
2022-03-11 05:53:38 +00:00
<p align="right">(<a href="#top">返回顶端</a>)</p>
2022-02-18 08:28:37 +00:00
## 快速预览
2022-03-11 05:53:38 +00:00
### 几行代码开启分布式训练
2022-02-18 08:28:37 +00:00
```python
parallel = dict(
pipeline=2,
tensor=dict(mode='2.5d', depth = 1, size=4)
2022-02-18 08:28:37 +00:00
)
```
### 几行代码开启异构训练
2022-02-18 08:28:37 +00:00
```python
zero = dict(
model_config=dict(
tensor_placement_policy='auto',
shard_strategy=TensorShardStrategy(),
reuse_fp16_shard=True
),
optimizer_config=dict(initial_scale=2**5, gpu_margin_mem_ratio=0.2)
)
2022-02-18 08:28:37 +00:00
```
2022-03-11 05:53:38 +00:00
<p align="right">(<a href="#top">返回顶端</a>)</p>
2022-02-18 08:28:37 +00:00
2022-03-11 05:53:38 +00:00
## 引用我们
2022-02-18 08:28:37 +00:00
```
@article{bian2021colossal,
title={Colossal-AI: A Unified Deep Learning System For Large-Scale Parallel Training},
author={Bian, Zhengda and Liu, Hongxin and Wang, Boxiang and Huang, Haichen and Li, Yongbin and Wang, Chuanrui and Cui, Fan and You, Yang},
journal={arXiv preprint arXiv:2110.14883},
year={2021}
}
```
2022-03-11 05:53:38 +00:00
<p align="right">(<a href="#top">返回顶端</a>)</p>