2022-06-22 07:54:03 +00:00
|
|
|
import torch.nn.functional as F
|
|
|
|
from typing import Optional
|
|
|
|
from torch import Tensor
|
|
|
|
from colossalai.tensor.op_wrapper import colo_op_impl
|
2022-07-21 02:53:15 +00:00
|
|
|
from colossalai.tensor import ComputePattern, ComputePattern, ComputeSpec, ColoTensor, distspec, ColoTensorSpec, \
|
|
|
|
ShardSpec, ReplicaSpec
|
2022-06-22 07:54:03 +00:00
|
|
|
from ._utils import GeneralTensor, convert_to_colo_tensor
|
|
|
|
|
|
|
|
|
|
|
|
def colo_embedding_bag_1Dcol(input_tensor: ColoTensor,
|
|
|
|
weight: ColoTensor,
|
|
|
|
offsets: Optional[Tensor] = None,
|
|
|
|
max_norm: Optional[float] = None,
|
|
|
|
norm_type: float = 2,
|
|
|
|
scale_grad_by_freq: bool = False,
|
|
|
|
mode: str = "mean",
|
|
|
|
sparse: bool = False,
|
|
|
|
per_sample_weights: Optional[Tensor] = None,
|
|
|
|
include_last_offset: bool = False,
|
|
|
|
padding_idx: Optional[int] = None) -> ColoTensor:
|
|
|
|
# embedding_bag_1Dcol split the weight(lookup table) to (num_embeddings, embedding_dim/P)
|
|
|
|
# Gather splitted lookup table
|
2022-07-06 08:15:16 +00:00
|
|
|
pg = weight.get_process_group()
|
2022-07-11 07:51:48 +00:00
|
|
|
input_tensor = input_tensor.redistribute(ReplicaSpec())
|
2022-06-22 07:54:03 +00:00
|
|
|
|
|
|
|
output_parallel = F.embedding_bag(input_tensor,
|
|
|
|
weight,
|
|
|
|
offsets=offsets,
|
|
|
|
max_norm=max_norm,
|
|
|
|
norm_type=norm_type,
|
|
|
|
scale_grad_by_freq=scale_grad_by_freq,
|
|
|
|
mode=mode,
|
|
|
|
sparse=sparse,
|
|
|
|
per_sample_weights=per_sample_weights,
|
|
|
|
include_last_offset=include_last_offset,
|
|
|
|
padding_idx=padding_idx)
|
2022-07-11 07:51:48 +00:00
|
|
|
output_spec = ColoTensorSpec(pg, ShardSpec([-1], [weight.get_tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
|
2022-06-22 07:54:03 +00:00
|
|
|
output = ColoTensor.from_torch_tensor(output_parallel, spec=output_spec)
|
2022-06-23 08:35:05 +00:00
|
|
|
|
2022-07-06 08:15:16 +00:00
|
|
|
if weight.compute_spec.output_replicate:
|
2022-06-24 05:08:54 +00:00
|
|
|
return output.to_replicate()
|
|
|
|
else:
|
|
|
|
return output
|
2022-06-22 07:54:03 +00:00
|
|
|
|
|
|
|
|
|
|
|
def colo_embedding_bag_1d(tp_mode: str,
|
|
|
|
input_tensor: ColoTensor,
|
|
|
|
weight: ColoTensor,
|
|
|
|
offsets: Optional[Tensor] = None,
|
|
|
|
max_norm: Optional[float] = None,
|
|
|
|
norm_type: float = 2,
|
|
|
|
scale_grad_by_freq: bool = False,
|
|
|
|
mode: str = "mean",
|
|
|
|
sparse: bool = False,
|
|
|
|
per_sample_weights: Optional[Tensor] = None,
|
|
|
|
include_last_offset: bool = False,
|
|
|
|
padding_idx: Optional[int] = None) -> ColoTensor:
|
|
|
|
assert tp_mode in ('col',)
|
|
|
|
funcs = {'col': colo_embedding_bag_1Dcol}
|
|
|
|
return funcs[tp_mode](input_tensor,
|
|
|
|
weight,
|
|
|
|
offsets=offsets,
|
|
|
|
max_norm=max_norm,
|
|
|
|
norm_type=norm_type,
|
|
|
|
scale_grad_by_freq=scale_grad_by_freq,
|
|
|
|
mode=mode,
|
|
|
|
sparse=sparse,
|
|
|
|
per_sample_weights=per_sample_weights,
|
|
|
|
include_last_offset=include_last_offset,
|
|
|
|
padding_idx=padding_idx)
|
|
|
|
|
|
|
|
|
|
|
|
@colo_op_impl(F.embedding_bag)
|
|
|
|
def colo_embedding_bag(input_tensor: GeneralTensor,
|
|
|
|
weight: GeneralTensor,
|
|
|
|
offsets: Optional[Tensor] = None,
|
|
|
|
max_norm: Optional[float] = None,
|
|
|
|
norm_type: float = 2,
|
|
|
|
scale_grad_by_freq: bool = False,
|
|
|
|
mode: str = "mean",
|
|
|
|
sparse: bool = False,
|
|
|
|
per_sample_weights: Optional[Tensor] = None,
|
|
|
|
include_last_offset: bool = False,
|
|
|
|
padding_idx: Optional[int] = None):
|
|
|
|
"""Handles ``__torch_function__`` dispatch for ``torch.nn.functional.embedding_bag``.
|
|
|
|
This method looks up an embedding table.
|
|
|
|
"""
|
2022-07-06 08:15:16 +00:00
|
|
|
assert isinstance(weight, ColoTensor)
|
|
|
|
input_tensor = convert_to_colo_tensor(input_tensor, weight.get_process_group())
|
2022-06-22 07:54:03 +00:00
|
|
|
|
|
|
|
# Handle differen parallel actions.
|
|
|
|
|
2022-07-21 02:53:15 +00:00
|
|
|
if not weight.has_compute_spec(): # No Model Parallel Applied
|
2022-07-06 08:15:16 +00:00
|
|
|
assert weight.is_replicate(), 'Invalid weight spec for native embedding op'
|
2022-06-22 07:54:03 +00:00
|
|
|
return ColoTensor.from_torch_tensor(
|
2022-07-21 02:53:15 +00:00
|
|
|
tensor=F.embedding_bag(input_tensor,
|
|
|
|
weight,
|
|
|
|
offsets=offsets,
|
|
|
|
max_norm=max_norm,
|
|
|
|
norm_type=norm_type,
|
|
|
|
scale_grad_by_freq=scale_grad_by_freq,
|
|
|
|
mode=mode,
|
|
|
|
sparse=sparse,
|
|
|
|
per_sample_weights=per_sample_weights,
|
|
|
|
include_last_offset=include_last_offset,
|
|
|
|
padding_idx=padding_idx),
|
|
|
|
spec=ColoTensorSpec(weight.get_process_group()))
|
|
|
|
elif weight.has_compute_pattern(ComputePattern.TP1D): # Single Model Parallel Applied
|
2022-07-06 08:15:16 +00:00
|
|
|
if weight.is_shard_1dcol():
|
2022-06-22 07:54:03 +00:00
|
|
|
tp_mode = 'col'
|
|
|
|
else:
|
|
|
|
raise NotImplementedError
|
|
|
|
return colo_embedding_bag_1d(tp_mode,
|
|
|
|
input_tensor,
|
|
|
|
weight,
|
|
|
|
offsets=offsets,
|
|
|
|
max_norm=max_norm,
|
|
|
|
norm_type=norm_type,
|
|
|
|
scale_grad_by_freq=scale_grad_by_freq,
|
|
|
|
mode=mode,
|
|
|
|
sparse=sparse,
|
|
|
|
per_sample_weights=per_sample_weights,
|
|
|
|
include_last_offset=include_last_offset,
|
|
|
|
padding_idx=padding_idx)
|
|
|
|
else:
|
|
|
|
raise NotImplementedError
|