mirror of https://github.com/hpcaitech/ColossalAI
[tensor] add embedding bag op (#1156)
parent
ae86151968
commit
22717a856f
|
@ -4,3 +4,4 @@ from .layernorm import colo_layernorm
|
|||
from .loss import colo_cross_entropy
|
||||
from .embedding import colo_embedding
|
||||
from .addmm import colo_addmm
|
||||
from .embedding_bag import colo_embedding_bag
|
||||
|
|
|
@ -0,0 +1,122 @@
|
|||
import torch.nn.functional as F
|
||||
from typing import Optional
|
||||
from torch import Tensor
|
||||
from colossalai.tensor.op_wrapper import colo_op_impl
|
||||
from colossalai.tensor import ComputePattern, TensorSpec, ComputePattern, ParallelAction, ColoTensor, distspec
|
||||
from ._utils import GeneralTensor, convert_to_colo_tensor
|
||||
|
||||
|
||||
def colo_embedding_bag_1Dcol(input_tensor: ColoTensor,
|
||||
weight: ColoTensor,
|
||||
offsets: Optional[Tensor] = None,
|
||||
max_norm: Optional[float] = None,
|
||||
norm_type: float = 2,
|
||||
scale_grad_by_freq: bool = False,
|
||||
mode: str = "mean",
|
||||
sparse: bool = False,
|
||||
per_sample_weights: Optional[Tensor] = None,
|
||||
include_last_offset: bool = False,
|
||||
padding_idx: Optional[int] = None) -> ColoTensor:
|
||||
# embedding_bag_1Dcol split the weight(lookup table) to (num_embeddings, embedding_dim/P)
|
||||
# Gather splitted lookup table
|
||||
input_tensor = input_tensor.convert_to_dist_spec(distspec.replicate(weight.spec.get_process_group()))
|
||||
|
||||
output_parallel = F.embedding_bag(input_tensor,
|
||||
weight,
|
||||
offsets=offsets,
|
||||
max_norm=max_norm,
|
||||
norm_type=norm_type,
|
||||
scale_grad_by_freq=scale_grad_by_freq,
|
||||
mode=mode,
|
||||
sparse=sparse,
|
||||
per_sample_weights=per_sample_weights,
|
||||
include_last_offset=include_last_offset,
|
||||
padding_idx=padding_idx)
|
||||
output_spec = TensorSpec(
|
||||
distspec.shard(weight.spec.get_process_group(), [-1], [weight.spec.get_process_group_size()]),
|
||||
ParallelAction(ComputePattern.TP1D))
|
||||
output = ColoTensor.from_torch_tensor(output_parallel, spec=output_spec)
|
||||
if weight.spec.parallel_action.gather_out:
|
||||
output = output.convert_to_dist_spec(distspec.replicate(weight.spec.get_process_group()))
|
||||
return output
|
||||
|
||||
|
||||
def colo_embedding_bag_1d(tp_mode: str,
|
||||
input_tensor: ColoTensor,
|
||||
weight: ColoTensor,
|
||||
offsets: Optional[Tensor] = None,
|
||||
max_norm: Optional[float] = None,
|
||||
norm_type: float = 2,
|
||||
scale_grad_by_freq: bool = False,
|
||||
mode: str = "mean",
|
||||
sparse: bool = False,
|
||||
per_sample_weights: Optional[Tensor] = None,
|
||||
include_last_offset: bool = False,
|
||||
padding_idx: Optional[int] = None) -> ColoTensor:
|
||||
assert tp_mode in ('col',)
|
||||
funcs = {'col': colo_embedding_bag_1Dcol}
|
||||
return funcs[tp_mode](input_tensor,
|
||||
weight,
|
||||
offsets=offsets,
|
||||
max_norm=max_norm,
|
||||
norm_type=norm_type,
|
||||
scale_grad_by_freq=scale_grad_by_freq,
|
||||
mode=mode,
|
||||
sparse=sparse,
|
||||
per_sample_weights=per_sample_weights,
|
||||
include_last_offset=include_last_offset,
|
||||
padding_idx=padding_idx)
|
||||
|
||||
|
||||
@colo_op_impl(F.embedding_bag)
|
||||
def colo_embedding_bag(input_tensor: GeneralTensor,
|
||||
weight: GeneralTensor,
|
||||
offsets: Optional[Tensor] = None,
|
||||
max_norm: Optional[float] = None,
|
||||
norm_type: float = 2,
|
||||
scale_grad_by_freq: bool = False,
|
||||
mode: str = "mean",
|
||||
sparse: bool = False,
|
||||
per_sample_weights: Optional[Tensor] = None,
|
||||
include_last_offset: bool = False,
|
||||
padding_idx: Optional[int] = None):
|
||||
"""Handles ``__torch_function__`` dispatch for ``torch.nn.functional.embedding_bag``.
|
||||
This method looks up an embedding table.
|
||||
"""
|
||||
input_tensor, weight = tuple(map(convert_to_colo_tensor, (input_tensor, weight)))
|
||||
|
||||
# Handle differen parallel actions.
|
||||
|
||||
if not weight.has_spec(): # No Model Parallel Applied
|
||||
assert weight.spec.is_gathered(), 'Invalid weight spec for native embedding op'
|
||||
return ColoTensor.from_torch_tensor(
|
||||
F.embedding_bag(input_tensor,
|
||||
weight,
|
||||
offsets=offsets,
|
||||
max_norm=max_norm,
|
||||
norm_type=norm_type,
|
||||
scale_grad_by_freq=scale_grad_by_freq,
|
||||
mode=mode,
|
||||
sparse=sparse,
|
||||
per_sample_weights=per_sample_weights,
|
||||
include_last_offset=include_last_offset,
|
||||
padding_idx=padding_idx))
|
||||
elif weight.spec.has_compute_pattern(ComputePattern.TP1D): # Single Model Parallel Applied
|
||||
if weight.spec.is_1D_col():
|
||||
tp_mode = 'col'
|
||||
else:
|
||||
raise NotImplementedError
|
||||
return colo_embedding_bag_1d(tp_mode,
|
||||
input_tensor,
|
||||
weight,
|
||||
offsets=offsets,
|
||||
max_norm=max_norm,
|
||||
norm_type=norm_type,
|
||||
scale_grad_by_freq=scale_grad_by_freq,
|
||||
mode=mode,
|
||||
sparse=sparse,
|
||||
per_sample_weights=per_sample_weights,
|
||||
include_last_offset=include_last_offset,
|
||||
padding_idx=padding_idx)
|
||||
else:
|
||||
raise NotImplementedError
|
|
@ -0,0 +1,56 @@
|
|||
import torch
|
||||
from colossalai.context.parallel_mode import ParallelMode
|
||||
from colossalai.tensor import ColoTensor, distspec, ColoParameter
|
||||
from torch.nn import functional as F
|
||||
from functools import partial
|
||||
|
||||
import colossalai
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
from colossalai.testing import rerun_if_address_is_in_use
|
||||
from colossalai.utils import free_port
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.tensor import TensorSpec, ComputePattern, ParallelAction, DistSpecManager
|
||||
from _utils import tensor_equal, tensor_shard_equal
|
||||
|
||||
|
||||
def init_1d_col(weight):
|
||||
spec = TensorSpec(
|
||||
distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [-1], [gpc.get_world_size(ParallelMode.PARALLEL_1D)]),
|
||||
ParallelAction(ComputePattern.TP1D))
|
||||
with DistSpecManager.no_grad():
|
||||
weight.set_spec(spec)
|
||||
|
||||
|
||||
def run_with_spec(spec_init_func):
|
||||
model = torch.nn.EmbeddingBag(10, 4).cuda()
|
||||
weight = ColoParameter(model.weight.clone())
|
||||
spec_init_func(weight)
|
||||
inputs = torch.tensor([1, 2, 4, 5, 4, 3, 2, 9]).cuda()
|
||||
offsets = torch.tensor([0, 4]).cuda()
|
||||
out = model(inputs, offsets=offsets)
|
||||
colo_out = F.embedding_bag(inputs, weight, offsets=offsets)
|
||||
assert tensor_equal(out, colo_out)
|
||||
grad = torch.rand_like(out)
|
||||
out.backward(grad)
|
||||
colo_out.backward(grad)
|
||||
assert tensor_shard_equal(model.weight.grad, weight.grad)
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
run_with_spec(init_1d_col)
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize('world_size', [1, 4])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_embedding_bag_1d(world_size):
|
||||
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_embedding_bag_1d(4)
|
Loading…
Reference in New Issue