You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/nn/_ops/embedding_bag.py

126 lines
6.0 KiB

import torch.nn.functional as F
from typing import Optional
from torch import Tensor
from colossalai.tensor.op_wrapper import colo_op_impl
from colossalai.tensor import ComputePattern, ComputePattern, ComputeSpec, ColoTensor, distspec, ColoTensorSpec
from ._utils import GeneralTensor, convert_to_colo_tensor
def colo_embedding_bag_1Dcol(input_tensor: ColoTensor,
weight: ColoTensor,
offsets: Optional[Tensor] = None,
max_norm: Optional[float] = None,
norm_type: float = 2,
scale_grad_by_freq: bool = False,
mode: str = "mean",
sparse: bool = False,
per_sample_weights: Optional[Tensor] = None,
include_last_offset: bool = False,
padding_idx: Optional[int] = None) -> ColoTensor:
# embedding_bag_1Dcol split the weight(lookup table) to (num_embeddings, embedding_dim/P)
# Gather splitted lookup table
pg = weight.get_process_group()
input_tensor = input_tensor.redistribute(distspec.replicate())
output_parallel = F.embedding_bag(input_tensor,
weight,
offsets=offsets,
max_norm=max_norm,
norm_type=norm_type,
scale_grad_by_freq=scale_grad_by_freq,
mode=mode,
sparse=sparse,
per_sample_weights=per_sample_weights,
include_last_offset=include_last_offset,
padding_idx=padding_idx)
output_spec = ColoTensorSpec(pg, distspec.shard([-1], [weight.get_tp_world_size()]),
ComputeSpec(ComputePattern.TP1D))
output = ColoTensor.from_torch_tensor(output_parallel, spec=output_spec)
if weight.compute_spec.output_replicate:
return output.to_replicate()
else:
return output
def colo_embedding_bag_1d(tp_mode: str,
input_tensor: ColoTensor,
weight: ColoTensor,
offsets: Optional[Tensor] = None,
max_norm: Optional[float] = None,
norm_type: float = 2,
scale_grad_by_freq: bool = False,
mode: str = "mean",
sparse: bool = False,
per_sample_weights: Optional[Tensor] = None,
include_last_offset: bool = False,
padding_idx: Optional[int] = None) -> ColoTensor:
assert tp_mode in ('col',)
funcs = {'col': colo_embedding_bag_1Dcol}
return funcs[tp_mode](input_tensor,
weight,
offsets=offsets,
max_norm=max_norm,
norm_type=norm_type,
scale_grad_by_freq=scale_grad_by_freq,
mode=mode,
sparse=sparse,
per_sample_weights=per_sample_weights,
include_last_offset=include_last_offset,
padding_idx=padding_idx)
@colo_op_impl(F.embedding_bag)
def colo_embedding_bag(input_tensor: GeneralTensor,
weight: GeneralTensor,
offsets: Optional[Tensor] = None,
max_norm: Optional[float] = None,
norm_type: float = 2,
scale_grad_by_freq: bool = False,
mode: str = "mean",
sparse: bool = False,
per_sample_weights: Optional[Tensor] = None,
include_last_offset: bool = False,
padding_idx: Optional[int] = None):
"""Handles ``__torch_function__`` dispatch for ``torch.nn.functional.embedding_bag``.
This method looks up an embedding table.
"""
assert isinstance(weight, ColoTensor)
input_tensor = convert_to_colo_tensor(input_tensor, weight.get_process_group())
# Handle differen parallel actions.
if not weight.has_compute_spec(): # No Model Parallel Applied
assert weight.is_replicate(), 'Invalid weight spec for native embedding op'
return ColoTensor.from_torch_tensor(
F.embedding_bag(input_tensor,
weight,
offsets=offsets,
max_norm=max_norm,
norm_type=norm_type,
scale_grad_by_freq=scale_grad_by_freq,
mode=mode,
sparse=sparse,
per_sample_weights=per_sample_weights,
include_last_offset=include_last_offset,
padding_idx=padding_idx))
elif weight.has_compute_pattern(ComputePattern.TP1D): # Single Model Parallel Applied
if weight.is_shard_1dcol():
tp_mode = 'col'
else:
raise NotImplementedError
return colo_embedding_bag_1d(tp_mode,
input_tensor,
weight,
offsets=offsets,
max_norm=max_norm,
norm_type=norm_type,
scale_grad_by_freq=scale_grad_by_freq,
mode=mode,
sparse=sparse,
per_sample_weights=per_sample_weights,
include_last_offset=include_last_offset,
padding_idx=padding_idx)
else:
raise NotImplementedError