ColossalAI/applications/ChatGPT/examples/train_reward_model.py

99 lines
3.9 KiB
Python
Raw Normal View History

2023-02-14 14:17:25 +00:00
import argparse
import loralib as lora
import torch
from chatgpt.dataset import RewardDataset
from chatgpt.nn import BLOOMRM, GPTRM, OPTRM
2023-02-14 14:17:25 +00:00
from chatgpt.trainer import RewardModelTrainer
from chatgpt.trainer.strategies import ColossalAIStrategy, DDPStrategy, NaiveStrategy
2023-02-14 14:17:25 +00:00
from datasets import load_dataset
from torch.optim import Adam
from transformers import AutoTokenizer, BloomTokenizerFast
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
2023-02-14 14:17:25 +00:00
from colossalai.nn.optimizer import HybridAdam
2023-02-14 14:17:25 +00:00
def train(args):
# configure strategy
if args.strategy == 'naive':
strategy = NaiveStrategy()
elif args.strategy == 'ddp':
strategy = DDPStrategy()
elif args.strategy == 'colossalai_gemini':
strategy = ColossalAIStrategy(stage=3, placement_policy='cuda')
elif args.strategy == 'colossalai_zero2':
strategy = ColossalAIStrategy(stage=2, placement_policy='cuda')
else:
raise ValueError(f'Unsupported strategy "{args.strategy}"')
# configure model
with strategy.model_init_context():
if args.model == 'bloom':
model = BLOOMRM(pretrained=args.pretrain, lora_rank=args.lora_rank).cuda()
elif args.model == 'opt':
model = OPTRM(pretrained=args.pretrain, lora_rank=args.lora_rank).cuda()
elif args.model == 'gpt2':
model = GPTRM(pretrained=args.pretrain, lora_rank=args.lora_rank).cuda()
else:
raise ValueError(f'Unsupported model "{args.model}"')
# configure tokenizer
if args.model == 'gpt2':
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
tokenizer.pad_token = tokenizer.eos_token
elif args.model == 'bloom':
tokenizer = BloomTokenizerFast.from_pretrained(args.pretrain)
tokenizer.pad_token = tokenizer.eos_token
elif args.model == 'opt':
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
else:
raise ValueError(f'Unsupported model "{args.model}"')
tokenizer.pad_token = tokenizer.eos_token
max_len = 512
2023-02-14 14:17:25 +00:00
# configure optimizer
if args.strategy.startswith('colossalai'):
optim = HybridAdam(model.parameters(), lr=5e-5)
else:
optim = Adam(model.parameters(), lr=5e-5)
2023-02-14 14:17:25 +00:00
# prepare for data and dataset
data = load_dataset(args.dataset)
train_data = data["train"]
eval_data = data['test']
2023-02-14 14:17:25 +00:00
train_dataset = RewardDataset(train_data, tokenizer, max_len)
eval_dataset = RewardDataset(eval_data, tokenizer, max_len)
trainer = RewardModelTrainer(model=model,
strategy=strategy,
optim=optim,
2023-02-14 14:17:25 +00:00
train_dataset=train_dataset,
eval_dataset=eval_dataset,
batch_size=args.batch_size,
max_epochs=args.max_epochs)
2023-02-14 14:17:25 +00:00
trainer.fit(use_lora=args.lora_rank)
# save model checkpoint after fitting on only rank0
strategy.save_model(model, 'rm_checkpoint.pt', only_rank0=True)
# save optimizer checkpoint on all ranks
strategy.save_optimizer(optim, 'rm_optim_checkpoint_%d.pt' % (torch.cuda.current_device()), only_rank0=False)
2023-02-14 14:17:25 +00:00
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--strategy',
choices=['naive', 'ddp', 'colossalai_gemini', 'colossalai_zero2'],
default='naive')
parser.add_argument('--model', choices=['gpt2', 'bloom', 'opt'], default='bloom')
2023-02-14 14:17:25 +00:00
parser.add_argument('--pretrain', type=str, default=None)
parser.add_argument('--dataset', type=str, default='Dahoas/rm-static')
parser.add_argument('--save_path', type=str, default='rm_ckpt.pth')
parser.add_argument('--max_epochs', type=int, default=1)
parser.add_argument('--batch_size', type=int, default=4)
2023-02-14 14:17:25 +00:00
parser.add_argument('--lora_rank', type=int, default=0, help="low-rank adaptation matrices rank")
args = parser.parse_args()
train(args)