2023-02-14 14:17:25 +00:00
|
|
|
import argparse
|
|
|
|
|
|
|
|
import loralib as lora
|
|
|
|
import torch
|
|
|
|
from chatgpt.dataset import RewardDataset
|
|
|
|
from chatgpt.nn import BLOOMRM
|
|
|
|
from chatgpt.trainer import RewardModelTrainer
|
2023-02-16 03:24:07 +00:00
|
|
|
from chatgpt.trainer.strategies import ColossalAIStrategy, DDPStrategy, NaiveStrategy
|
2023-02-14 14:17:25 +00:00
|
|
|
from datasets import load_dataset
|
2023-02-16 03:24:07 +00:00
|
|
|
from torch.optim import Adam
|
2023-02-14 14:17:25 +00:00
|
|
|
from transformers import BloomTokenizerFast
|
|
|
|
|
2023-02-16 03:24:07 +00:00
|
|
|
from colossalai.nn.optimizer import HybridAdam
|
|
|
|
|
2023-02-14 14:17:25 +00:00
|
|
|
|
|
|
|
def train(args):
|
2023-02-16 03:24:07 +00:00
|
|
|
# configure strategy
|
|
|
|
if args.strategy == 'naive':
|
|
|
|
strategy = NaiveStrategy()
|
|
|
|
elif args.strategy == 'ddp':
|
|
|
|
strategy = DDPStrategy()
|
|
|
|
elif args.strategy == 'colossalai_gemini':
|
|
|
|
strategy = ColossalAIStrategy(stage=3, placement_policy='cuda')
|
|
|
|
elif args.strategy == 'colossalai_zero2':
|
|
|
|
strategy = ColossalAIStrategy(stage=2, placement_policy='cuda')
|
|
|
|
else:
|
|
|
|
raise ValueError(f'Unsupported strategy "{args.strategy}"')
|
|
|
|
|
|
|
|
# configure model
|
2023-02-14 14:17:25 +00:00
|
|
|
tokenizer = BloomTokenizerFast.from_pretrained(args.pretrain)
|
|
|
|
tokenizer.pad_token = tokenizer.eos_token
|
2023-02-21 03:35:45 +00:00
|
|
|
with strategy.model_init_context():
|
|
|
|
model = BLOOMRM(pretrained=args.pretrain).cuda()
|
2023-02-14 14:17:25 +00:00
|
|
|
max_len = 1024
|
|
|
|
|
2023-02-16 03:24:07 +00:00
|
|
|
# configure optimizer
|
|
|
|
if args.strategy.startswith('colossalai'):
|
|
|
|
optim = HybridAdam(model.parameters(), lr=5e-5)
|
|
|
|
else:
|
|
|
|
optim = Adam(model.parameters(), lr=5e-5)
|
|
|
|
|
2023-02-14 14:17:25 +00:00
|
|
|
# prepare for data and dataset
|
|
|
|
data = load_dataset(args.dataset)
|
2023-02-16 03:24:07 +00:00
|
|
|
train_data = data["train"].select(range(100))
|
|
|
|
eval_data = data['test'].select(range(5))
|
2023-02-14 14:17:25 +00:00
|
|
|
train_dataset = RewardDataset(train_data, tokenizer, max_len)
|
|
|
|
eval_dataset = RewardDataset(eval_data, tokenizer, max_len)
|
|
|
|
|
|
|
|
# batch_size here is expected to be C(k,2), k means # response of each prompt
|
|
|
|
# be limited with the format of dataset 'Dahoas/rm-static', we'd better use batch_size as 1
|
|
|
|
trainer = RewardModelTrainer(model=model,
|
2023-02-16 03:24:07 +00:00
|
|
|
strategy=strategy,
|
|
|
|
optim=optim,
|
2023-02-14 14:17:25 +00:00
|
|
|
train_dataset=train_dataset,
|
|
|
|
eval_dataset=eval_dataset,
|
|
|
|
batch_size=args.batch_size,
|
2023-02-16 03:24:07 +00:00
|
|
|
max_epochs=args.max_epochs)
|
2023-02-14 14:17:25 +00:00
|
|
|
|
|
|
|
trainer.fit(use_lora=args.lora_rank)
|
|
|
|
|
|
|
|
if args.lora_rank > 0:
|
|
|
|
torch.save({'model_state_dict': lora.lora_state_dict(trainer.model)}, args.save_path)
|
|
|
|
else:
|
|
|
|
torch.save(trainer.model, args.save_path)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
parser = argparse.ArgumentParser()
|
2023-02-16 03:24:07 +00:00
|
|
|
parser.add_argument('--strategy',
|
|
|
|
choices=['naive', 'ddp', 'colossalai_gemini', 'colossalai_zero2'],
|
|
|
|
default='naive')
|
2023-02-14 14:17:25 +00:00
|
|
|
parser.add_argument('--pretrain', type=str, default=None)
|
|
|
|
parser.add_argument('--dataset', type=str, default='Dahoas/rm-static')
|
|
|
|
parser.add_argument('--save_path', type=str, default='rm_ckpt.pth')
|
2023-02-21 03:35:45 +00:00
|
|
|
parser.add_argument('--max_epochs', type=int, default=10)
|
|
|
|
parser.add_argument('--batch_size', type=int, default=4)
|
2023-02-14 14:17:25 +00:00
|
|
|
parser.add_argument('--lora_rank', type=int, default=0, help="low-rank adaptation matrices rank")
|
|
|
|
args = parser.parse_args()
|
|
|
|
train(args)
|