ColossalAI/applications/ChatGPT/examples/train_reward_model.py

80 lines
3.1 KiB
Python
Raw Normal View History

2023-02-14 14:17:25 +00:00
import argparse
import loralib as lora
import torch
from chatgpt.dataset import RewardDataset
from chatgpt.nn import BLOOMRM
from chatgpt.trainer import RewardModelTrainer
from chatgpt.trainer.strategies import ColossalAIStrategy, DDPStrategy, NaiveStrategy
2023-02-14 14:17:25 +00:00
from datasets import load_dataset
from torch.optim import Adam
2023-02-14 14:17:25 +00:00
from transformers import BloomTokenizerFast
from colossalai.nn.optimizer import HybridAdam
2023-02-14 14:17:25 +00:00
def train(args):
# configure strategy
if args.strategy == 'naive':
strategy = NaiveStrategy()
elif args.strategy == 'ddp':
strategy = DDPStrategy()
elif args.strategy == 'colossalai_gemini':
strategy = ColossalAIStrategy(stage=3, placement_policy='cuda')
elif args.strategy == 'colossalai_zero2':
strategy = ColossalAIStrategy(stage=2, placement_policy='cuda')
else:
raise ValueError(f'Unsupported strategy "{args.strategy}"')
# configure model
2023-02-14 14:17:25 +00:00
tokenizer = BloomTokenizerFast.from_pretrained(args.pretrain)
tokenizer.pad_token = tokenizer.eos_token
with strategy.model_init_context():
model = BLOOMRM(pretrained=args.pretrain).cuda()
2023-02-14 14:17:25 +00:00
max_len = 1024
# configure optimizer
if args.strategy.startswith('colossalai'):
optim = HybridAdam(model.parameters(), lr=5e-5)
else:
optim = Adam(model.parameters(), lr=5e-5)
2023-02-14 14:17:25 +00:00
# prepare for data and dataset
data = load_dataset(args.dataset)
train_data = data["train"].select(range(100))
eval_data = data['test'].select(range(5))
2023-02-14 14:17:25 +00:00
train_dataset = RewardDataset(train_data, tokenizer, max_len)
eval_dataset = RewardDataset(eval_data, tokenizer, max_len)
# batch_size here is expected to be C(k,2), k means # response of each prompt
# be limited with the format of dataset 'Dahoas/rm-static', we'd better use batch_size as 1
trainer = RewardModelTrainer(model=model,
strategy=strategy,
optim=optim,
2023-02-14 14:17:25 +00:00
train_dataset=train_dataset,
eval_dataset=eval_dataset,
batch_size=args.batch_size,
max_epochs=args.max_epochs)
2023-02-14 14:17:25 +00:00
trainer.fit(use_lora=args.lora_rank)
if args.lora_rank > 0:
torch.save({'model_state_dict': lora.lora_state_dict(trainer.model)}, args.save_path)
else:
torch.save(trainer.model, args.save_path)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--strategy',
choices=['naive', 'ddp', 'colossalai_gemini', 'colossalai_zero2'],
default='naive')
2023-02-14 14:17:25 +00:00
parser.add_argument('--pretrain', type=str, default=None)
parser.add_argument('--dataset', type=str, default='Dahoas/rm-static')
parser.add_argument('--save_path', type=str, default='rm_ckpt.pth')
parser.add_argument('--max_epochs', type=int, default=10)
parser.add_argument('--batch_size', type=int, default=4)
2023-02-14 14:17:25 +00:00
parser.add_argument('--lora_rank', type=int, default=0, help="low-rank adaptation matrices rank")
args = parser.parse_args()
train(args)