2023-03-28 12:25:36 +00:00
|
|
|
from abc import ABC, abstractmethod
|
2023-06-29 02:48:09 +00:00
|
|
|
from contextlib import contextmanager
|
|
|
|
from typing import List
|
2023-03-28 12:25:36 +00:00
|
|
|
|
2023-06-29 02:48:09 +00:00
|
|
|
import torch.nn as nn
|
|
|
|
import tqdm
|
2023-04-18 08:44:03 +00:00
|
|
|
from coati.experience_maker import Experience
|
2023-06-29 02:48:09 +00:00
|
|
|
from coati.replay_buffer import NaiveReplayBuffer
|
|
|
|
from torch.optim import Optimizer
|
|
|
|
from torch.utils.data import DataLoader
|
2023-03-28 12:25:36 +00:00
|
|
|
|
|
|
|
from .callbacks import Callback
|
|
|
|
from .strategies import Strategy
|
2023-06-29 02:48:09 +00:00
|
|
|
from .utils import CycledDataLoader, is_rank_0
|
2023-03-28 12:25:36 +00:00
|
|
|
|
|
|
|
|
2023-06-29 02:48:09 +00:00
|
|
|
class SLTrainer(ABC):
|
2023-03-28 12:25:36 +00:00
|
|
|
"""
|
2023-06-29 02:48:09 +00:00
|
|
|
Base class for supervised learning trainers.
|
2023-03-28 12:25:36 +00:00
|
|
|
|
|
|
|
Args:
|
|
|
|
strategy (Strategy):the strategy to use for training
|
|
|
|
max_epochs (int, defaults to 1): the number of epochs of training process
|
2023-06-29 02:48:09 +00:00
|
|
|
model (nn.Module): the model to train
|
|
|
|
optim (Optimizer): the optimizer to use for training
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
strategy: Strategy,
|
|
|
|
max_epochs: int,
|
|
|
|
model: nn.Module,
|
|
|
|
optimizer: Optimizer,
|
|
|
|
) -> None:
|
|
|
|
super().__init__()
|
|
|
|
self.strategy = strategy
|
|
|
|
self.max_epochs = max_epochs
|
|
|
|
self.model = model
|
|
|
|
self.optimizer = optimizer
|
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
def _train(self, epoch):
|
|
|
|
raise NotImplementedError()
|
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
def _eval(self, epoch):
|
|
|
|
raise NotImplementedError()
|
|
|
|
|
|
|
|
def _before_fit(self):
|
|
|
|
self.no_epoch_bar = False
|
|
|
|
|
|
|
|
def fit(self, *args, **kwargs):
|
|
|
|
self._before_fit(*args, **kwargs)
|
|
|
|
for epoch in tqdm.trange(self.max_epochs,
|
|
|
|
desc="Epochs",
|
|
|
|
disable=not is_rank_0() or self.no_epoch_bar
|
|
|
|
):
|
|
|
|
self._train(epoch)
|
|
|
|
self._eval(epoch)
|
|
|
|
|
|
|
|
|
|
|
|
class OnPolicyTrainer(ABC):
|
|
|
|
"""
|
|
|
|
Base class for on-policy rl trainers, e.g. PPO.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
strategy (Strategy):the strategy to use for training
|
|
|
|
buffer (NaiveReplayBuffer): the buffer to collect experiences
|
|
|
|
sample_buffer (bool, defaults to False): whether to sample from buffer
|
2023-04-18 08:44:03 +00:00
|
|
|
dataloader_pin_memory (bool, defaults to True): whether to pin memory for data loader
|
2023-03-28 12:25:36 +00:00
|
|
|
callbacks (List[Callback], defaults to []): the callbacks to call during training process
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
strategy: Strategy,
|
2023-06-29 02:48:09 +00:00
|
|
|
buffer: NaiveReplayBuffer,
|
|
|
|
sample_buffer: bool,
|
|
|
|
dataloader_pin_memory: bool,
|
|
|
|
callbacks: List[Callback] = []
|
|
|
|
) -> None:
|
2023-03-28 12:25:36 +00:00
|
|
|
super().__init__()
|
|
|
|
self.strategy = strategy
|
2023-06-29 02:48:09 +00:00
|
|
|
self.buffer = buffer
|
|
|
|
self.sample_buffer = sample_buffer
|
2023-03-28 12:25:36 +00:00
|
|
|
self.dataloader_pin_memory = dataloader_pin_memory
|
|
|
|
self.callbacks = callbacks
|
|
|
|
|
2023-06-29 02:48:09 +00:00
|
|
|
@contextmanager
|
|
|
|
def _fit_ctx(self) -> None:
|
2023-03-28 12:25:36 +00:00
|
|
|
for callback in self.callbacks:
|
|
|
|
callback.on_fit_start()
|
2023-06-29 02:48:09 +00:00
|
|
|
try:
|
|
|
|
yield
|
|
|
|
finally:
|
|
|
|
for callback in self.callbacks:
|
|
|
|
callback.on_fit_end()
|
|
|
|
|
|
|
|
@contextmanager
|
|
|
|
def _episode_ctx(self, episode: int) -> None:
|
2023-03-28 12:25:36 +00:00
|
|
|
for callback in self.callbacks:
|
|
|
|
callback.on_episode_start(episode)
|
2023-06-29 02:48:09 +00:00
|
|
|
try:
|
|
|
|
yield
|
|
|
|
finally:
|
|
|
|
for callback in self.callbacks:
|
|
|
|
callback.on_episode_end(episode)
|
2023-03-28 12:25:36 +00:00
|
|
|
|
|
|
|
def _on_make_experience_start(self) -> None:
|
|
|
|
for callback in self.callbacks:
|
|
|
|
callback.on_make_experience_start()
|
|
|
|
|
|
|
|
def _on_make_experience_end(self, experience: Experience) -> None:
|
|
|
|
for callback in self.callbacks:
|
|
|
|
callback.on_make_experience_end(experience)
|
|
|
|
|
|
|
|
def _on_learn_epoch_start(self, epoch: int) -> None:
|
|
|
|
for callback in self.callbacks:
|
|
|
|
callback.on_learn_epoch_start(epoch)
|
|
|
|
|
|
|
|
def _on_learn_epoch_end(self, epoch: int) -> None:
|
|
|
|
for callback in self.callbacks:
|
|
|
|
callback.on_learn_epoch_end(epoch)
|
|
|
|
|
|
|
|
def _on_learn_batch_start(self) -> None:
|
|
|
|
for callback in self.callbacks:
|
|
|
|
callback.on_learn_batch_start()
|
|
|
|
|
|
|
|
def _on_learn_batch_end(self, metrics: dict, experience: Experience) -> None:
|
|
|
|
for callback in self.callbacks:
|
|
|
|
callback.on_learn_batch_end(metrics, experience)
|
2023-06-29 02:48:09 +00:00
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
def _make_experience(self, collect_step: int):
|
|
|
|
"""
|
|
|
|
Implement this method to make experience.
|
|
|
|
"""
|
|
|
|
raise NotImplementedError()
|
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
def _learn(self, update_step: int):
|
|
|
|
"""
|
|
|
|
Implement this method to learn from experience, either
|
|
|
|
sample from buffer or transform buffer into dataloader.
|
|
|
|
"""
|
|
|
|
raise NotImplementedError()
|
|
|
|
|
|
|
|
def _collect_phase(self, collect_step: int):
|
|
|
|
self._on_make_experience_start()
|
|
|
|
experience = self._make_experience(collect_step)
|
|
|
|
self._on_make_experience_end(experience)
|
|
|
|
self.buffer.append(experience)
|
|
|
|
|
|
|
|
def _update_phase(self, update_step: int):
|
|
|
|
self._on_learn_epoch_start(update_step)
|
|
|
|
self._learn(update_step)
|
|
|
|
self._on_learn_epoch_end(update_step)
|
|
|
|
|
|
|
|
def fit(self,
|
|
|
|
prompt_dataloader: DataLoader,
|
|
|
|
pretrain_dataloader: DataLoader,
|
|
|
|
num_episodes: int,
|
|
|
|
num_collect_steps: int,
|
|
|
|
num_update_steps: int,
|
|
|
|
):
|
|
|
|
"""
|
|
|
|
The main training loop of on-policy rl trainers.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
prompt_dataloader (DataLoader): the dataloader to use for prompt data
|
|
|
|
pretrain_dataloader (DataLoader): the dataloader to use for pretrain data
|
|
|
|
num_episodes (int): the number of episodes to train
|
|
|
|
num_collect_steps (int): the number of collect steps per episode
|
|
|
|
num_update_steps (int): the number of update steps per episode
|
|
|
|
"""
|
|
|
|
self.prompt_dataloader = CycledDataLoader(prompt_dataloader)
|
|
|
|
self.pretrain_dataloader = CycledDataLoader(pretrain_dataloader)
|
|
|
|
|
|
|
|
with self._fit_ctx():
|
|
|
|
for episode in tqdm.trange(num_episodes,
|
|
|
|
desc="Episodes",
|
|
|
|
disable=not is_rank_0()):
|
|
|
|
with self._episode_ctx(episode):
|
|
|
|
for collect_step in tqdm.trange(num_collect_steps,
|
|
|
|
desc="Collect steps",
|
|
|
|
disable=not is_rank_0()):
|
|
|
|
self._collect_phase(collect_step)
|
|
|
|
if not self.sample_buffer:
|
|
|
|
# HACK(cwher): according to the design of boost API, dataloader should also be boosted,
|
|
|
|
# but it is impractical to adapt this pattern in RL training. Thus, I left dataloader unboosted.
|
|
|
|
# I only call strategy.setup_dataloader() to setup dataloader.
|
|
|
|
self.dataloader = self.strategy.setup_dataloader(self.buffer,
|
|
|
|
self.dataloader_pin_memory)
|
|
|
|
for update_step in tqdm.trange(num_update_steps,
|
|
|
|
desc="Update steps",
|
|
|
|
disable=not is_rank_0()):
|
|
|
|
self._update_phase(update_step)
|
|
|
|
# NOTE: this is for on-policy algorithms
|
|
|
|
self.buffer.clear()
|