mirror of https://github.com/hpcaitech/ColossalAI
reconstruct chat trainer and fix training script (#3588)
Co-authored-by: Yuanchen Xu <yuanchen.xu00@gmail.com>pull/3592/head
parent
dac127d0ee
commit
1ec0d386a9
|
@ -156,8 +156,10 @@ def main(args):
|
|||
eos_token_id=tokenizer.eos_token_id,
|
||||
callbacks=[performance_evaluator])
|
||||
|
||||
random_prompts = torch.randint(tokenizer.vocab_size, (1000, 400), device=torch.cuda.current_device())
|
||||
trainer.fit(random_prompts,
|
||||
random_prompts = torch.randint(tokenizer.vocab_size, (1000, 1, 400), device=torch.cuda.current_device())
|
||||
random_attention_mask = torch.randint(1, (1000, 1, 400), device=torch.cuda.current_device()).to(torch.bool)
|
||||
random_pretrain = [{'input_ids':random_prompts[i], 'labels':random_prompts[i], 'attention_mask':random_attention_mask[i]} for i in range(1000)]
|
||||
trainer.fit(random_prompts, random_pretrain,
|
||||
num_episodes=args.num_episodes,
|
||||
max_timesteps=args.max_timesteps,
|
||||
update_timesteps=args.update_timesteps)
|
||||
|
|
|
@ -149,8 +149,10 @@ def main(args):
|
|||
eos_token_id=tokenizer.eos_token_id,
|
||||
callbacks=[performance_evaluator])
|
||||
|
||||
random_prompts = torch.randint(tokenizer.vocab_size, (1000, 400), device=torch.cuda.current_device())
|
||||
trainer.fit(random_prompts,
|
||||
random_prompts = torch.randint(tokenizer.vocab_size, (1000, 1, 400), device=torch.cuda.current_device())
|
||||
random_attention_mask = torch.randint(1, (1000, 1, 400), device=torch.cuda.current_device()).to(torch.bool)
|
||||
random_pretrain = [{'input_ids':random_prompts[i], 'labels':random_prompts[i], 'attention_mask':random_attention_mask[i]} for i in range(1000)]
|
||||
trainer.fit(random_prompts, random_pretrain,
|
||||
num_episodes=args.num_episodes,
|
||||
max_timesteps=args.max_timesteps,
|
||||
update_timesteps=args.update_timesteps)
|
||||
|
|
|
@ -2,15 +2,10 @@ from abc import ABC, abstractmethod
|
|||
from typing import Any, Callable, Dict, List, Optional, Union
|
||||
|
||||
import torch
|
||||
from coati.experience_maker import Experience, ExperienceMaker
|
||||
from coati.replay_buffer import ReplayBuffer
|
||||
from torch import Tensor
|
||||
from torch.utils.data import DistributedSampler
|
||||
from tqdm import tqdm
|
||||
from coati.experience_maker import Experience
|
||||
|
||||
from .callbacks import Callback
|
||||
from .strategies import Strategy
|
||||
from .utils import is_rank_0
|
||||
|
||||
|
||||
class Trainer(ABC):
|
||||
|
@ -19,113 +14,28 @@ class Trainer(ABC):
|
|||
|
||||
Args:
|
||||
strategy (Strategy):the strategy to use for training
|
||||
experience_maker (ExperienceMaker): the experience maker to use for produce experience to fullfill replay buffer
|
||||
replay_buffer (ReplayBuffer): the replay buffer to use for training
|
||||
experience_batch_size (int, defaults to 8): the batch size to use for experience generation
|
||||
max_epochs (int, defaults to 1): the number of epochs of training process
|
||||
tokenizer (Callable, optional): the tokenizer to use for tokenizing the input
|
||||
sample_replay_buffer (bool, defaults to False): whether to sample from replay buffer
|
||||
data_loader_pin_memory (bool, defaults to True): whether to pin memory for data loader
|
||||
dataloader_pin_memory (bool, defaults to True): whether to pin memory for data loader
|
||||
callbacks (List[Callback], defaults to []): the callbacks to call during training process
|
||||
generate_kwargs (dict, optional): the kwargs to use while model generating
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
strategy: Strategy,
|
||||
experience_maker: ExperienceMaker,
|
||||
replay_buffer: ReplayBuffer,
|
||||
experience_batch_size: int = 8,
|
||||
max_epochs: int = 1,
|
||||
tokenizer: Optional[Callable[[Any], dict]] = None,
|
||||
sample_replay_buffer: bool = False,
|
||||
dataloader_pin_memory: bool = True,
|
||||
callbacks: List[Callback] = [],
|
||||
**generate_kwargs) -> None:
|
||||
super().__init__()
|
||||
self.strategy = strategy
|
||||
self.experience_maker = experience_maker
|
||||
self.replay_buffer = replay_buffer
|
||||
self.experience_batch_size = experience_batch_size
|
||||
self.max_epochs = max_epochs
|
||||
self.tokenizer = tokenizer
|
||||
self.generate_kwargs = generate_kwargs
|
||||
self.sample_replay_buffer = sample_replay_buffer
|
||||
self.dataloader_pin_memory = dataloader_pin_memory
|
||||
self.callbacks = callbacks
|
||||
|
||||
@abstractmethod
|
||||
def training_step(self, experience: Experience) -> Dict[str, Any]:
|
||||
pass
|
||||
|
||||
def _make_experience(self, inputs: Union[Tensor, Dict[str, Tensor]]) -> Experience:
|
||||
if isinstance(inputs, Tensor):
|
||||
return self.experience_maker.make_experience(inputs, **self.generate_kwargs)
|
||||
elif isinstance(inputs, dict):
|
||||
return self.experience_maker.make_experience(**inputs, **self.generate_kwargs)
|
||||
else:
|
||||
raise ValueError(f'Unsupported input type "{type(inputs)}"')
|
||||
|
||||
def _sample_prompts(self, prompts) -> list:
|
||||
indices = list(range(len(prompts)))
|
||||
sampled_indices = self.strategy.experience_sampler.choice(indices, self.experience_batch_size, replace=False)
|
||||
return [prompts[i] for i in sampled_indices]
|
||||
|
||||
def _learn(self):
|
||||
# replay buffer may be empty at first, we should rebuild at each training
|
||||
if not self.sample_replay_buffer:
|
||||
dataloader = self.strategy.setup_dataloader(self.replay_buffer, self.dataloader_pin_memory)
|
||||
device = torch.cuda.current_device()
|
||||
if self.sample_replay_buffer:
|
||||
pbar = tqdm(range(self.max_epochs), desc='Train epoch', disable=not is_rank_0())
|
||||
for _ in pbar:
|
||||
experience = self.replay_buffer.sample()
|
||||
metrics = self.training_step(experience)
|
||||
pbar.set_postfix(metrics)
|
||||
else:
|
||||
for epoch in range(self.max_epochs):
|
||||
self._on_learn_epoch_start(epoch)
|
||||
if isinstance(dataloader.sampler, DistributedSampler):
|
||||
dataloader.sampler.set_epoch(epoch)
|
||||
pbar = tqdm(dataloader, desc=f'Train epoch [{epoch+1}/{self.max_epochs}]', disable=not is_rank_0())
|
||||
for experience in pbar:
|
||||
self._on_learn_batch_start()
|
||||
experience.to_device(device)
|
||||
metrics = self.training_step(experience)
|
||||
self._on_learn_batch_end(metrics, experience)
|
||||
pbar.set_postfix(metrics)
|
||||
self._on_learn_epoch_end(epoch)
|
||||
|
||||
def fit(self,
|
||||
prompt_dataloader,
|
||||
pretrain_dataloader,
|
||||
num_episodes: int = 50000,
|
||||
max_timesteps: int = 500,
|
||||
update_timesteps: int = 5000) -> None:
|
||||
time = 0
|
||||
self.pretrain_dataloader = pretrain_dataloader
|
||||
self.prompt_dataloader = prompt_dataloader
|
||||
self._on_fit_start()
|
||||
for episode in range(num_episodes):
|
||||
self._on_episode_start(episode)
|
||||
for timestep in tqdm(range(max_timesteps),
|
||||
desc=f'Episode [{episode+1}/{num_episodes}]',
|
||||
disable=not is_rank_0()):
|
||||
time += 1
|
||||
prompts = next(iter(self.prompt_dataloader))
|
||||
self._on_make_experience_start()
|
||||
self.experience_maker.initial_model.to(torch.cuda.current_device())
|
||||
self.experience_maker.reward_model.to(torch.cuda.current_device())
|
||||
experience = self._make_experience(prompts)
|
||||
self._on_make_experience_end(experience)
|
||||
self.replay_buffer.append(experience)
|
||||
if time % update_timesteps == 0:
|
||||
self.experience_maker.initial_model.to('cpu')
|
||||
self.experience_maker.reward_model.to('cpu')
|
||||
self._learn()
|
||||
self.replay_buffer.clear()
|
||||
self._on_episode_end(episode)
|
||||
self._on_fit_end()
|
||||
|
||||
# TODO(ver217): maybe simplify these code using context
|
||||
def _on_fit_start(self) -> None:
|
||||
for callback in self.callbacks:
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
from typing import Any, Callable, Dict, List, Optional
|
||||
from typing import Any, Callable, Dict, List, Optional, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
@ -7,12 +7,16 @@ from coati.models.base import Actor, Critic
|
|||
from coati.models.generation_utils import update_model_kwargs_fn
|
||||
from coati.models.loss import PolicyLoss, ValueLoss
|
||||
from coati.replay_buffer import NaiveReplayBuffer
|
||||
from torch import Tensor
|
||||
from torch.optim import Optimizer
|
||||
from torch.utils.data import DistributedSampler
|
||||
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
|
||||
from tqdm import tqdm
|
||||
|
||||
from .base import Trainer
|
||||
from .callbacks import Callback
|
||||
from .strategies import Strategy
|
||||
from .utils import is_rank_0
|
||||
|
||||
|
||||
class PPOTrainer(Trainer):
|
||||
|
@ -33,6 +37,7 @@ class PPOTrainer(Trainer):
|
|||
buffer_cpu_offload (bool, defaults to True): whether to offload replay buffer to cpu
|
||||
eps_clip (float, defaults to 0.2): the clip coefficient of policy loss
|
||||
vf_coef (float, defaults to 1.0): the coefficient of value loss
|
||||
ptx_coef (float, defaults to 0.9): the coefficient of ptx loss
|
||||
value_clip (float, defaults to 0.4): the clip coefficient of value loss
|
||||
experience_batch_size (int, defaults to 8): the batch size to use for experience generation
|
||||
max_epochs (int, defaults to 1): the number of epochs of training process
|
||||
|
@ -69,8 +74,13 @@ class PPOTrainer(Trainer):
|
|||
experience_maker = NaiveExperienceMaker(actor, critic, reward_model, initial_model, kl_coef)
|
||||
replay_buffer = NaiveReplayBuffer(train_batch_size, buffer_limit, buffer_cpu_offload)
|
||||
generate_kwargs = _set_default_generate_kwargs(strategy, generate_kwargs, actor)
|
||||
super().__init__(strategy, experience_maker, replay_buffer, experience_batch_size, max_epochs, tokenizer,
|
||||
sample_replay_buffer, dataloader_pin_memory, callbacks, **generate_kwargs)
|
||||
super().__init__(strategy, max_epochs, tokenizer, dataloader_pin_memory, callbacks, **generate_kwargs)
|
||||
|
||||
self.experience_maker = experience_maker
|
||||
self.replay_buffer = replay_buffer
|
||||
self.experience_batch_size = experience_batch_size
|
||||
self.sample_replay_buffer = sample_replay_buffer
|
||||
|
||||
self.actor = actor
|
||||
self.critic = critic
|
||||
|
||||
|
@ -82,6 +92,81 @@ class PPOTrainer(Trainer):
|
|||
self.actor_optim = actor_optim
|
||||
self.critic_optim = critic_optim
|
||||
|
||||
def _make_experience(self, inputs: Union[Tensor, Dict[str, Tensor]]) -> Experience:
|
||||
if isinstance(inputs, Tensor):
|
||||
return self.experience_maker.make_experience(inputs, **self.generate_kwargs)
|
||||
elif isinstance(inputs, dict):
|
||||
return self.experience_maker.make_experience(**inputs, **self.generate_kwargs)
|
||||
else:
|
||||
raise ValueError(f'Unsupported input type "{type(inputs)}"')
|
||||
|
||||
def _sample_prompts(self, prompts) -> list:
|
||||
indices = list(range(len(prompts)))
|
||||
sampled_indices = self.strategy.experience_sampler.choice(
|
||||
indices, self.experience_batch_size, replace=False)
|
||||
return [prompts[i] for i in sampled_indices]
|
||||
|
||||
def _learn(self):
|
||||
# replay buffer may be empty at first, we should rebuild at each training
|
||||
if not self.sample_replay_buffer:
|
||||
dataloader = self.strategy.setup_dataloader(
|
||||
self.replay_buffer, self.dataloader_pin_memory)
|
||||
device = torch.cuda.current_device()
|
||||
if self.sample_replay_buffer:
|
||||
pbar = tqdm(range(self.max_epochs), desc='Train epoch',
|
||||
disable=not is_rank_0())
|
||||
for _ in pbar:
|
||||
experience = self.replay_buffer.sample()
|
||||
metrics = self.training_step(experience)
|
||||
pbar.set_postfix(metrics)
|
||||
else:
|
||||
for epoch in range(self.max_epochs):
|
||||
self._on_learn_epoch_start(epoch)
|
||||
if isinstance(dataloader.sampler, DistributedSampler):
|
||||
dataloader.sampler.set_epoch(epoch)
|
||||
pbar = tqdm(
|
||||
dataloader, desc=f'Train epoch [{epoch+1}/{self.max_epochs}]', disable=not is_rank_0())
|
||||
for experience in pbar:
|
||||
self._on_learn_batch_start()
|
||||
experience.to_device(device)
|
||||
metrics = self.training_step(experience)
|
||||
self._on_learn_batch_end(metrics, experience)
|
||||
pbar.set_postfix(metrics)
|
||||
self._on_learn_epoch_end(epoch)
|
||||
|
||||
def fit(self,
|
||||
prompt_dataloader,
|
||||
pretrain_dataloader,
|
||||
num_episodes: int = 50000,
|
||||
max_timesteps: int = 500,
|
||||
update_timesteps: int = 5000) -> None:
|
||||
time = 0
|
||||
self.pretrain_dataloader = pretrain_dataloader
|
||||
self.prompt_dataloader = prompt_dataloader
|
||||
self._on_fit_start()
|
||||
for episode in range(num_episodes):
|
||||
self._on_episode_start(episode)
|
||||
for timestep in tqdm(range(max_timesteps),
|
||||
desc=f'Episode [{episode+1}/{num_episodes}]',
|
||||
disable=not is_rank_0()):
|
||||
time += 1
|
||||
prompts = next(iter(self.prompt_dataloader))
|
||||
self._on_make_experience_start()
|
||||
self.experience_maker.initial_model.to(
|
||||
torch.cuda.current_device())
|
||||
self.experience_maker.reward_model.to(
|
||||
torch.cuda.current_device())
|
||||
experience = self._make_experience(prompts)
|
||||
self._on_make_experience_end(experience)
|
||||
self.replay_buffer.append(experience)
|
||||
if time % update_timesteps == 0:
|
||||
self.experience_maker.initial_model.to('cpu')
|
||||
self.experience_maker.reward_model.to('cpu')
|
||||
self._learn()
|
||||
self.replay_buffer.clear()
|
||||
self._on_episode_end(episode)
|
||||
self._on_fit_end()
|
||||
|
||||
def training_step(self, experience: Experience) -> Dict[str, float]:
|
||||
self.actor.train()
|
||||
self.critic.train()
|
||||
|
|
|
@ -1,6 +1,5 @@
|
|||
from abc import ABC
|
||||
from datetime import datetime
|
||||
from typing import Optional
|
||||
from typing import Optional, List
|
||||
|
||||
import pandas as pd
|
||||
import torch
|
||||
|
@ -10,11 +9,13 @@ from torch.utils.data import DataLoader, Dataset, DistributedSampler
|
|||
from tqdm import tqdm
|
||||
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
|
||||
|
||||
from .callbacks import Callback
|
||||
from .base import Trainer
|
||||
from .strategies import Strategy
|
||||
from .utils import is_rank_0
|
||||
|
||||
|
||||
class RewardModelTrainer(ABC):
|
||||
class RewardModelTrainer(Trainer):
|
||||
"""
|
||||
Trainer to use while training reward model.
|
||||
|
||||
|
@ -23,11 +24,12 @@ class RewardModelTrainer(ABC):
|
|||
strategy (Strategy): the strategy to use for training
|
||||
optim(Optimizer): the optimizer to use for training
|
||||
loss_fn (callable): the loss function to use for training
|
||||
train_dataset (Dataset): the dataset to use for training
|
||||
valid_dataset (Dataset): the dataset to use for validation
|
||||
eval_dataset (Dataset): the dataset to use for evaluation
|
||||
train_dataloader (DataLoader): the dataloader to use for training
|
||||
valid_dataloader (DataLoader): the dataloader to use for validation
|
||||
eval_dataloader (DataLoader): the dataloader to use for evaluation
|
||||
batch_size (int, defaults to 1): the batch size while training
|
||||
max_epochs (int, defaults to 2): the number of epochs to train
|
||||
callbacks (List[Callback], defaults to []): the callbacks to call during training process
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
|
@ -36,25 +38,19 @@ class RewardModelTrainer(ABC):
|
|||
strategy: Strategy,
|
||||
optim: Optimizer,
|
||||
loss_fn,
|
||||
train_dataset: Dataset,
|
||||
valid_dataset: Dataset,
|
||||
eval_dataset: Dataset,
|
||||
train_dataloader: DataLoader,
|
||||
valid_dataloader: DataLoader,
|
||||
eval_dataloader: DataLoader,
|
||||
batch_size: int = 1,
|
||||
max_epochs: int = 1,
|
||||
callbacks: List[Callback] = [],
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.strategy = strategy
|
||||
self.epochs = max_epochs
|
||||
super().__init__(strategy, max_epochs, callbacks=callbacks)
|
||||
train_sampler = None
|
||||
|
||||
if dist.is_initialized() and dist.get_world_size() > 1:
|
||||
train_sampler = DistributedSampler(train_dataset, shuffle=True, seed=42, drop_last=True)
|
||||
self.train_dataloader = DataLoader(train_dataset,
|
||||
shuffle=(train_sampler is None),
|
||||
sampler=train_sampler,
|
||||
batch_size=batch_size)
|
||||
self.valid_dataloader = DataLoader(valid_dataset, batch_size=batch_size, shuffle=True)
|
||||
self.eval_dataloader = DataLoader(eval_dataset, batch_size=batch_size, shuffle=True)
|
||||
self.train_dataloader = train_dataloader
|
||||
self.valid_dataloader = valid_dataloader
|
||||
self.eval_dataloader = eval_dataloader
|
||||
|
||||
self.model = strategy.setup_model(model)
|
||||
self.loss_fn = loss_fn
|
||||
|
@ -86,8 +82,8 @@ class RewardModelTrainer(ABC):
|
|||
|
||||
def fit(self):
|
||||
time = datetime.now()
|
||||
epoch_bar = tqdm(range(self.epochs), desc='Train epoch', disable=not is_rank_0())
|
||||
for epoch in range(self.epochs):
|
||||
epoch_bar = tqdm(range(self.max_epochs), desc='Train epoch', disable=not is_rank_0())
|
||||
for epoch in range(self.max_epochs):
|
||||
step_bar = tqdm(range(self.train_dataloader.__len__()),
|
||||
desc='Train step of epoch %d' % epoch,
|
||||
disable=not is_rank_0())
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
import math
|
||||
import time
|
||||
from abc import ABC
|
||||
from typing import Optional
|
||||
from typing import Optional, List
|
||||
|
||||
import loralib as lora
|
||||
import torch
|
||||
|
@ -19,11 +18,13 @@ from transformers.trainer import get_scheduler
|
|||
|
||||
from colossalai.logging import get_dist_logger
|
||||
|
||||
from .callbacks import Callback
|
||||
from .base import Trainer
|
||||
from .strategies import Strategy
|
||||
from .utils import is_rank_0
|
||||
|
||||
|
||||
class SFTTrainer(ABC):
|
||||
class SFTTrainer(Trainer):
|
||||
"""
|
||||
Trainer to use while training reward model.
|
||||
|
||||
|
@ -35,6 +36,7 @@ class SFTTrainer(ABC):
|
|||
eval_dataloader: the dataloader to use for evaluation
|
||||
batch_size (int, defaults to 1): the batch size while training
|
||||
max_epochs (int, defaults to 2): the number of epochs to train
|
||||
callbacks (List[Callback], defaults to []): the callbacks to call during training process
|
||||
optim_kwargs (dict, defaults to {'lr':1e-4}): the kwargs to use while initializing optimizer
|
||||
"""
|
||||
|
||||
|
@ -48,10 +50,9 @@ class SFTTrainer(ABC):
|
|||
batch_size: int = 1,
|
||||
max_epochs: int = 2,
|
||||
accimulation_steps: int = 8,
|
||||
callbacks: List[Callback] = [],
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.strategy = strategy
|
||||
self.epochs = max_epochs
|
||||
super().__init__(strategy, max_epochs, callbacks=callbacks)
|
||||
self.train_dataloader = train_dataloader
|
||||
self.eval_dataloader = eval_dataloader
|
||||
|
||||
|
@ -62,7 +63,7 @@ class SFTTrainer(ABC):
|
|||
|
||||
self.accimulation_steps = accimulation_steps
|
||||
num_update_steps_per_epoch = len(train_dataloader) // self.accimulation_steps
|
||||
max_steps = math.ceil(self.epochs * num_update_steps_per_epoch)
|
||||
max_steps = math.ceil(self.max_epochs * num_update_steps_per_epoch)
|
||||
|
||||
self.scheduler = get_scheduler("cosine",
|
||||
self.optimizer,
|
||||
|
@ -74,10 +75,10 @@ class SFTTrainer(ABC):
|
|||
wandb.watch(self.model)
|
||||
total_loss = 0
|
||||
# epoch_bar = tqdm(range(self.epochs), desc='Epochs', disable=not is_rank_0())
|
||||
step_bar = tqdm(range(len(self.train_dataloader) // self.accimulation_steps * self.epochs),
|
||||
step_bar = tqdm(range(len(self.train_dataloader) // self.accimulation_steps * self.max_epochs),
|
||||
desc=f'steps',
|
||||
disable=not is_rank_0())
|
||||
for epoch in range(self.epochs):
|
||||
for epoch in range(self.max_epochs):
|
||||
|
||||
# process_bar = tqdm(range(len(self.train_dataloader)), desc=f'Train process for{epoch}', disable=not is_rank_0())
|
||||
# train
|
||||
|
@ -148,7 +149,7 @@ class SFTTrainer(ABC):
|
|||
|
||||
loss_mean = loss_sum / num_seen
|
||||
if dist.get_rank() == 0:
|
||||
logger.info(f'Eval Epoch {epoch}/{self.epochs} loss {loss_mean}')
|
||||
logger.info(f'Eval Epoch {epoch}/{self.max_epochs} loss {loss_mean}')
|
||||
|
||||
# epoch_bar.update()
|
||||
|
||||
|
|
|
@ -114,8 +114,10 @@ def main(args):
|
|||
eos_token_id=tokenizer.eos_token_id,
|
||||
callbacks=callbacks)
|
||||
|
||||
random_prompts = torch.randint(tokenizer.vocab_size, (1000, 64), device=torch.cuda.current_device())
|
||||
trainer.fit(random_prompts,
|
||||
random_prompts = torch.randint(tokenizer.vocab_size, (1000, 1, 64), device=torch.cuda.current_device())
|
||||
random_attention_mask = torch.randint(1, (1000, 1, 64), device=torch.cuda.current_device()).to(torch.bool)
|
||||
random_pretrain = [{'input_ids':random_prompts[i], 'labels':random_prompts[i], 'attention_mask':random_attention_mask[i]} for i in range(1000)]
|
||||
trainer.fit(random_prompts, random_pretrain,
|
||||
num_episodes=args.num_episodes,
|
||||
max_timesteps=args.max_timesteps,
|
||||
update_timesteps=args.update_timesteps)
|
||||
|
@ -136,7 +138,7 @@ if __name__ == '__main__':
|
|||
default='naive')
|
||||
parser.add_argument('--model', type=str, default='gpt2', choices=['gpt2', 'bloom', 'opt', 'roberta'])
|
||||
parser.add_argument('--pretrain', type=str, default=None)
|
||||
parser.add_argument('--save_path', type=str, default='actor_checkpoint_dummy.pt')
|
||||
parser.add_argument('--save_path', type=str, default='actor_checkpoint_dummy')
|
||||
parser.add_argument('--need_optim_ckpt', type=bool, default=False)
|
||||
parser.add_argument('--num_episodes', type=int, default=50)
|
||||
parser.add_argument('--max_timesteps', type=int, default=10)
|
||||
|
|
|
@ -3,6 +3,7 @@ from random import randint
|
|||
|
||||
import loralib as lora
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from coati.dataset import HhRlhfDataset, RmStaticDataset
|
||||
from coati.models import LogExpLoss, LogSigLoss
|
||||
from coati.models.base import RewardModel
|
||||
|
@ -17,6 +18,8 @@ from coati.trainer.strategies import ColossalAIStrategy, DDPStrategy, NaiveStrat
|
|||
from coati.utils import prepare_llama_tokenizer_and_embedding
|
||||
from datasets import load_dataset
|
||||
from torch.optim import Adam
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.utils.data.distributed import DistributedSampler
|
||||
from transformers import AutoTokenizer, BloomTokenizerFast, DebertaV2Tokenizer, LlamaTokenizer, RobertaTokenizer
|
||||
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
|
||||
|
||||
|
@ -120,13 +123,38 @@ def train(args):
|
|||
else:
|
||||
raise ValueError(f'Unsupported dataset "{args.dataset}"')
|
||||
|
||||
if dist.is_initialized() and dist.get_world_size() > 1:
|
||||
train_sampler = DistributedSampler(train_dataset, shuffle=True, seed=42, drop_last=True, rank=dist.get_rank(),
|
||||
num_replicas=dist.get_world_size())
|
||||
valid_sampler = DistributedSampler(valid_dataset, shuffle=True, seed=42, drop_last=True, rank=dist.get_rank(),
|
||||
num_replicas=dist.get_world_size())
|
||||
eval_sampler = DistributedSampler(eval_dataset, shuffle=True, seed=42, drop_last=True, rank=dist.get_rank(),
|
||||
num_replicas=dist.get_world_size())
|
||||
else:
|
||||
train_sampler = None
|
||||
valid_sampler = None
|
||||
eval_sampler = None
|
||||
|
||||
train_dataloader = DataLoader(train_dataset,
|
||||
shuffle=(train_sampler is None),
|
||||
sampler=train_sampler,
|
||||
batch_size=args.batch_size,
|
||||
pin_memory=True)
|
||||
|
||||
valid_dataloader = DataLoader(valid_dataset, shuffle=(valid_sampler is None),
|
||||
sampler=valid_sampler,
|
||||
batch_size=args.batch_size, pin_memory=True)
|
||||
|
||||
eval_dataloader = DataLoader(eval_dataset, shuffle=(eval_sampler is None),
|
||||
sampler=eval_sampler, batch_size=args.batch_size, pin_memory=True)
|
||||
|
||||
trainer = RewardModelTrainer(model=model,
|
||||
strategy=strategy,
|
||||
optim=optim,
|
||||
loss_fn=loss_fn,
|
||||
train_dataset=train_dataset,
|
||||
valid_dataset=valid_dataset,
|
||||
eval_dataset=eval_dataset,
|
||||
train_dataloader=train_dataloader,
|
||||
valid_dataloader=valid_dataloader,
|
||||
eval_dataloader=eval_dataloader,
|
||||
batch_size=args.batch_size,
|
||||
max_epochs=args.max_epochs)
|
||||
|
||||
|
|
Loading…
Reference in New Issue