2024-03-29 06:12:29 +00:00
|
|
|
#!/usr/bin/env python3
|
|
|
|
# -*- coding: utf-8 -*-
|
|
|
|
"""
|
|
|
|
Dataloader for sft, dpo, ppo
|
|
|
|
"""
|
|
|
|
|
|
|
|
import os
|
|
|
|
from dataclasses import dataclass
|
2024-06-07 09:43:42 +00:00
|
|
|
from typing import Dict, Iterator, List, Optional, Sequence, Union
|
2024-03-29 06:12:29 +00:00
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn.functional as F
|
|
|
|
from coati.dataset.utils import chuncate_sequence, pad_to_max_len
|
|
|
|
from datasets import Dataset as HFDataset
|
|
|
|
from datasets import dataset_dict, load_from_disk
|
2024-06-07 09:43:42 +00:00
|
|
|
from torch.utils.data import ConcatDataset, Dataset, DistributedSampler
|
2024-03-29 06:12:29 +00:00
|
|
|
from transformers.tokenization_utils import PreTrainedTokenizer
|
|
|
|
|
|
|
|
DatasetType = Union[Dataset, ConcatDataset, dataset_dict.Dataset]
|
|
|
|
PathType = Union[str, os.PathLike]
|
|
|
|
|
|
|
|
|
|
|
|
def load_tokenized_dataset(
|
|
|
|
dataset_paths: Union[PathType, List[PathType]], mode: str = "train", **kwargs
|
|
|
|
) -> Optional[DatasetType]:
|
|
|
|
"""
|
|
|
|
Load pre-tokenized dataset.
|
|
|
|
Each instance of dataset is a dictionary with
|
|
|
|
`{'input_ids': List[int], 'labels': List[int], sequence: str}` format.
|
|
|
|
"""
|
[FP8] rebase main (#5963)
* add SimPO
* fix dataloader
* remove debug code
* add orpo
* fix style
* fix colossalai, transformers version
* fix colossalai, transformers version
* fix colossalai, transformers version
* fix torch colossalai version
* update transformers version
* [shardformer] DeepseekMoE support (#5871)
* [Feature] deepseek moe expert parallel implement
* [misc] fix typo, remove redundant file (#5867)
* [misc] fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Feature] deepseek support & unit test
* [misc] remove debug code & useless print
* [misc] fix typos (#5872)
* [Feature] remove modeling file, use auto config. (#5884)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [Deepseek] remove redundant code (#5888)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [misc] remove redundant code
* [Feature/deepseek] resolve comment. (#5889)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [misc] remove redundant code
* [misc] mv module replacement into if branch
* [misc] add some warning message and modify some code in unit test
* [misc] fix typos
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Hoxfix] Fix CUDA_DEVICE_MAX_CONNECTIONS for comm overlap
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Feat] Diffusion Model(PixArtAlpha/StableDiffusion3) Support (#5838)
* Diffusion Model Inference support
* Stable Diffusion 3 Support
* pixartalpha support
* [HotFix] CI,import,requirements-test for #5838 (#5892)
* [Hot Fix] CI,import,requirements-test
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Feature] Enable PP + SP for llama (#5868)
* fix cross-PP-stage position id length diff bug
* fix typo
* fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* use a one cross entropy func for all shardformer models
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [ShardFormer] Add Ulysses Sequence Parallelism support for Command-R, Qwen2 and ChatGLM (#5897)
* add benchmark for sft, dpo, simpo, orpo. Add benchmarking result. Support lora with gradient checkpoint
* fix style
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix eval
* hotfix citation
* [zero] support all-gather overlap (#5898)
* [zero] support all-gather overlap
* [zero] add overlap all-gather flag
* [misc] fix typo
* [zero] update api
* fix orpo cross entropy loss
* [Auto Parallel]: Speed up intra-op plan generation by 44% (#5446)
* Remove unnecessary calls to deepcopy
* Build DimSpec's difference dict only once
This change considerably speeds up construction speed of DimSpec objects. The difference_dict is the same for each DimSpec object, so a single copy of it is enough.
* Fix documentation of DimSpec's difference method
* [ShardFormer] fix qwen2 sp (#5903)
* [compatibility] support torch 2.2 (#5875)
* Support Pytorch 2.2.2
* keep build_on_pr file and update .compatibility
* fix object_to_tensor usage when torch>=2.3.0 (#5820)
* [misc] support torch2.3 (#5893)
* [misc] support torch2.3
* [devops] update compatibility ci
* [devops] update compatibility ci
* [devops] add debug
* [devops] add debug
* [devops] add debug
* [devops] add debug
* [devops] remove debug
* [devops] remove debug
* [release] update version (#5912)
* [plugin] support all-gather overlap for hybrid parallel (#5919)
* [plugin] fixed all-gather overlap support for hybrid parallel
* add kto
* fix style, add kto data sample
* [Examples] Add lazy init to OPT and GPT examples (#5924)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [ColossalChat] Hotfix for ColossalChat (#5910)
* add ignore and tiny llama
* fix path issue
* run style
* fix issue
* update bash
* add ignore and tiny llama
* fix path issue
* run style
* fix issue
* update bash
* fix ddp issue
* add Qwen 1.5 32B
* refactor tokenization
* [FIX BUG] UnboundLocalError: cannot access local variable 'default_conversation' where it is not associated with a value (#5931)
* cannot access local variable 'default_conversation' where it is not associated with a value
set default value for 'default_conversation'
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* fix test data
* refactor evaluation
* remove real data path
* remove real data path
* Add n_fused as an input from native_module (#5894)
* [FIX BUG] convert env param to int in (#5934)
* [Hotfix] Fix ZeRO typo #5936
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Feature] Add a switch to control whether the model checkpoint needs to be saved after each epoch ends (#5941)
* Add a switch to control whether the model checkpoint needs to be saved after each epoch ends
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* fix style
* fix style
* fix style
* [shardformer] hotfix attn mask (#5945)
* [shardformer] hotfix attn mask (#5947)
* [Feat] Distrifusion Acceleration Support for Diffusion Inference (#5895)
* Distrifusion Support source
* comp comm overlap optimization
* sd3 benchmark
* pixart distrifusion bug fix
* sd3 bug fix and benchmark
* generation bug fix
* naming fix
* add docstring, fix counter and shape error
* add reference
* readme and requirement
* [zero] hotfix update master params (#5951)
* [release] update version (#5952)
* [Chat] Fix lora (#5946)
* fix merging
* remove filepath
* fix style
* Update README.md (#5958)
* [hotfix] Remove unused plan section (#5957)
* remove readme
* fix readme
* update
* [test] add mixtral for sequence classification
* [test] add mixtral transformer test
* [moe] fix plugin
* [test] mixtra pp shard test
* [chore] handle non member group
* [zero] solve hang
* [test] pass mixtral shardformer test
* [moe] implement transit between non moe tp and ep
* [zero] solve hang
* [misc] solve booster hang by rename the variable
* solve hang when parallel mode = pp + dp
* [moe] implement submesh initialization
* [moe] add mixtral dp grad scaling when not all experts are activated
* [chore] manually revert unintended commit
* [chore] trivial fix
* [chore] arg pass & remove drop token
* [test] add mixtral modelling test
* [moe] implement tp
* [moe] test deepseek
* [moe] clean legacy code
* [Feature] MoE Ulysses Support (#5918)
* moe sp support
* moe sp bug solve
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [chore] minor fix
* [moe] init moe plugin comm setting with sp
* moe sp + ep bug fix
* [moe] finalize test (no pp)
* [moe] full test for deepseek and mixtral (pp + sp to fix)
* [chore] minor fix after rebase
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* [chore] solve moe ckpt test failure and some other arg pass failure
* [moe] remove ops
* [test] fix test: test_zero1_2
* [bug] fix: somehow logger hangs the program
* [moe] deepseek moe sp support
* [test] add check
* [deepseek] replace attn (a workaround for bug in transformers)
* [misc] skip redunant test
* [misc] remove debug/print code
* [moe] refactor mesh assignment
* Revert "[moe] implement submesh initialization"
This reverts commit 2f9bce6686d1415a83d5726dc5ff02222c742582.
* [chore] change moe_pg_mesh to private
* [misc] remove incompatible test config
* [misc] fix ci failure: change default value to false in moe plugin
* [misc] remove useless condition
* [chore] docstring
* [moe] remove force_overlap_comm flag and add warning instead
* [doc] add MoeHybridParallelPlugin docstring
* [moe] solve dp axis issue
* [chore] remove redundant test case, print string & reduce test tokens
* [feat] Dist Loader for Eval (#5950)
* support auto distributed data loader
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* support auto distributed data loader
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix tp error
* remove unused parameters
* remove unused
* update inference
* update docs
* update inference
---------
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [lora] lora support hybrid parallel plugin (#5956)
* lora support hybrid plugin
* fix
* fix
* fix
* fix
* fp8 operators for compressed communication
cast_to_fp8, cast_from_fp8, all_reduce_fp8
* fix scaling algorithm in FP8 casting
* support fp8 communication in pipeline parallelism
* add fp8_communication flag in the script
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* shardformer fp8
* fix rebase
* remove all to all
* fix shardformer fp8 communication training degradation
* [fp8] support all-gather flat tensor (#5932)
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* Update low_level_optim.py
---------
Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: Haze188 <haze188@qq.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: zhurunhua <1281592874@qq.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: Gao, Ruiyuan <905370712@qq.com>
Co-authored-by: hxwang <wang1570@e.ntu.edu.sg>
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: Wang Binluo <32676639+wangbluo@users.noreply.github.com>
Co-authored-by: HangXu <hangxu0304@gmail.com>
2024-08-06 08:29:37 +00:00
|
|
|
if not dataset_paths:
|
|
|
|
return None
|
2024-03-29 06:12:29 +00:00
|
|
|
mode_map = kwargs.get("mode_map", {"train": "train", "dev": "validation", "test": "test"})
|
|
|
|
assert mode in tuple(mode_map), f"Unsupported mode {mode}, it must be in {tuple(mode_map)}"
|
|
|
|
|
|
|
|
if isinstance(dataset_paths, (str, os.PathLike)):
|
|
|
|
dataset_paths = [dataset_paths]
|
|
|
|
|
|
|
|
datasets = [] # `List[datasets.dataset_dict.Dataset]`
|
|
|
|
for ds_path in dataset_paths:
|
|
|
|
ds_path = os.path.abspath(ds_path)
|
|
|
|
assert os.path.exists(ds_path), f"Not existed file path {ds_path}"
|
|
|
|
ds_dict = load_from_disk(dataset_path=ds_path, keep_in_memory=False)
|
|
|
|
if isinstance(ds_dict, HFDataset):
|
|
|
|
datasets.append(ds_dict)
|
|
|
|
else:
|
|
|
|
if mode_map[mode] in ds_dict:
|
|
|
|
datasets.append(ds_dict[mode_map[mode]])
|
|
|
|
if len(datasets) == 0:
|
|
|
|
return None
|
|
|
|
if len(datasets) == 1:
|
|
|
|
return datasets.pop()
|
|
|
|
return ConcatDataset(datasets=datasets)
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class DataCollatorForSupervisedDataset(object):
|
|
|
|
"""
|
|
|
|
Collate instances for supervised dataset.
|
|
|
|
Each instance is a tokenized dictionary with fields
|
|
|
|
`input_ids`(List[int]), `labels`(List[int]) and `sequence`(str).
|
|
|
|
"""
|
|
|
|
|
|
|
|
tokenizer: PreTrainedTokenizer
|
|
|
|
max_length: int = 4096
|
|
|
|
ignore_index: int = -100
|
|
|
|
|
|
|
|
def __call__(self, instances: Sequence[Dict[str, List[int]]]) -> Dict[str, torch.Tensor]:
|
|
|
|
"""
|
|
|
|
|
|
|
|
Args:
|
|
|
|
instances (`Sequence[Dict[str, List[int]]]`):
|
|
|
|
Mini-batch samples, each sample is stored in an individual dictionary.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
(`Dict[str, torch.Tensor]`): Contains the following `torch.Tensor`:
|
|
|
|
`input_ids`: `torch.Tensor` of shape (bsz, max_len);
|
|
|
|
`attention_mask`: `torch.BoolTensor` of shape (bsz, max_len);
|
|
|
|
`labels`: `torch.Tensor` of shape (bsz, max_len), which contains `IGNORE_INDEX`.
|
|
|
|
"""
|
|
|
|
assert isinstance(self.tokenizer.pad_token_id, int) and self.tokenizer.pad_token_id >= 0, (
|
|
|
|
f"`{self.tokenizer.__class__.__name__}.pad_token_id` must be a valid non-negative integer index value, "
|
|
|
|
f"but now `{self.tokenizer.pad_token_id}`"
|
|
|
|
)
|
|
|
|
|
|
|
|
# `List[torch.Tensor]`
|
|
|
|
batch_input_ids = [
|
2024-07-01 09:16:41 +00:00
|
|
|
(
|
|
|
|
torch.LongTensor(instance["input_ids"][: self.max_length])
|
|
|
|
if len(instance["input_ids"]) > self.max_length
|
|
|
|
else torch.LongTensor(instance["input_ids"])
|
|
|
|
)
|
2024-03-29 06:12:29 +00:00
|
|
|
for instance in instances
|
|
|
|
]
|
|
|
|
batch_labels = [
|
2024-07-01 09:16:41 +00:00
|
|
|
(
|
|
|
|
torch.LongTensor(instance["labels"][: self.max_length])
|
|
|
|
if len(instance["labels"]) > self.max_length
|
|
|
|
else torch.LongTensor(instance["labels"])
|
|
|
|
)
|
2024-03-29 06:12:29 +00:00
|
|
|
for instance in instances
|
|
|
|
]
|
|
|
|
if self.tokenizer.padding_side == "right":
|
|
|
|
input_ids = torch.nn.utils.rnn.pad_sequence(
|
|
|
|
sequences=batch_input_ids,
|
|
|
|
batch_first=True,
|
|
|
|
padding_value=self.tokenizer.pad_token_id,
|
|
|
|
) # (bsz, max_len)
|
|
|
|
labels = torch.nn.utils.rnn.pad_sequence(
|
|
|
|
sequences=batch_labels,
|
|
|
|
batch_first=True,
|
|
|
|
padding_value=self.ignore_index,
|
|
|
|
) # (bsz, max_len)
|
|
|
|
# pad to max
|
|
|
|
to_pad = self.max_length - input_ids.size(1)
|
|
|
|
input_ids = F.pad(input_ids, (0, to_pad), value=self.tokenizer.pad_token_id)
|
|
|
|
labels = F.pad(labels, (0, to_pad), value=self.ignore_index)
|
|
|
|
elif self.tokenizer.padding_side == "left":
|
|
|
|
reversed_input_ids = [seq.flip(dims=(0,)) for seq in batch_input_ids]
|
|
|
|
reversed_input_ids = torch.nn.utils.rnn.pad_sequence(
|
|
|
|
sequences=reversed_input_ids,
|
|
|
|
batch_first=True,
|
|
|
|
padding_value=self.tokenizer.pad_token_id,
|
|
|
|
) # (bsz, max_len)
|
|
|
|
input_ids = torch.flip(reversed_input_ids, dims=(1,)) # (bsz, max_len)
|
|
|
|
reversed_labels = [seq.flip(dims=(0,)) for seq in batch_labels]
|
|
|
|
reversed_labels = torch.nn.utils.rnn.pad_sequence(
|
|
|
|
sequences=reversed_labels,
|
|
|
|
batch_first=True,
|
|
|
|
padding_value=self.ignore_index,
|
|
|
|
) # (bsz, max_len)
|
|
|
|
labels = torch.flip(reversed_labels, dims=(1,)) # (bsz, max_len)
|
|
|
|
else:
|
|
|
|
raise RuntimeError(
|
|
|
|
f"`{self.tokenizer.__class__.__name__}.padding_side` can only be `left` or `right`, "
|
|
|
|
f"but now `{self.tokenizer.padding_side}`"
|
|
|
|
)
|
|
|
|
|
|
|
|
attention_mask = input_ids.ne(self.tokenizer.pad_token_id) # `torch.BoolTensor`, (bsz, max_len)
|
|
|
|
|
|
|
|
return dict(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class DataCollatorForPromptDataset(DataCollatorForSupervisedDataset):
|
|
|
|
def __call__(self, instances: Sequence[Dict[str, List[int]]]) -> Dict[str, torch.Tensor]:
|
|
|
|
"""
|
|
|
|
|
|
|
|
Args:
|
|
|
|
instances (`Sequence[Dict[str, List[int]]]`):
|
|
|
|
Mini-batch samples, each sample is stored in an individual dictionary.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
(`Dict[str, torch.Tensor]`): Contains the following `torch.Tensor`:
|
|
|
|
`input_ids`: `torch.Tensor` of shape (bsz, max_len);
|
|
|
|
`attention_mask`: `torch.BoolTensor` of shape (bsz, max_len);
|
|
|
|
"""
|
|
|
|
instances = [{"input_ids": ins["input_ids"], "labels": ins["input_ids"]} for ins in instances]
|
|
|
|
ret = super().__call__(instances=instances)
|
|
|
|
input_ids = F.pad(
|
|
|
|
ret["input_ids"], (self.max_length - ret["input_ids"].size(1), 0), value=self.tokenizer.pad_token_id
|
|
|
|
)
|
|
|
|
attention_mask = F.pad(ret["attention_mask"], (self.max_length - ret["attention_mask"].size(1), 0), value=False)
|
|
|
|
return {"input_ids": input_ids, "attention_mask": attention_mask}
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class DataCollatorForPreferenceDataset(object):
|
|
|
|
"""
|
|
|
|
Collate instances for supervised dataset.
|
|
|
|
Each instance is a tokenized dictionary with fields
|
|
|
|
`input_ids`(List[int]), `labels`(List[int]) and `sequence`(str).
|
|
|
|
"""
|
|
|
|
|
|
|
|
tokenizer: PreTrainedTokenizer
|
|
|
|
max_length: int = 4096
|
|
|
|
|
|
|
|
def __call__(self, instances: Sequence[Dict[str, List[int]]]) -> Dict[str, torch.Tensor]:
|
|
|
|
"""
|
|
|
|
|
|
|
|
Args:
|
|
|
|
instances (`Sequence[Dict[str, List[int]]]`):
|
|
|
|
Mini-batch samples, each sample is stored in an individual dictionary.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
(`Dict[str, torch.Tensor]`): Contains the following `torch.Tensor`:
|
|
|
|
`input_ids`: `torch.Tensor` of shape (bsz, max_len);
|
|
|
|
`attention_mask`: `torch.BoolTensor` of shape (bsz, max_len);
|
|
|
|
`labels`: `torch.Tensor` of shape (bsz, max_len), which contains `IGNORE_INDEX`.
|
|
|
|
"""
|
|
|
|
assert isinstance(self.tokenizer.pad_token_id, int) and self.tokenizer.pad_token_id >= 0, (
|
|
|
|
f"`{self.tokenizer.__class__.__name__}.pad_token_id` must be a valid non-negative integer index value, "
|
|
|
|
f"but now `{self.tokenizer.pad_token_id}`"
|
|
|
|
)
|
|
|
|
|
|
|
|
(
|
|
|
|
chosen_input_ids,
|
|
|
|
chosen_loss_mask, # [batch_size * seq_len]
|
|
|
|
reject_input_ids,
|
|
|
|
reject_loss_mask,
|
|
|
|
) = (
|
|
|
|
chuncate_sequence([ins["chosen_input_ids"] for ins in instances], self.max_length, torch.int64),
|
|
|
|
chuncate_sequence([ins["chosen_loss_mask"] for ins in instances], self.max_length, torch.bool),
|
|
|
|
chuncate_sequence([ins["rejected_input_ids"] for ins in instances], self.max_length, torch.int64),
|
|
|
|
chuncate_sequence([ins["rejected_loss_mask"] for ins in instances], self.max_length, torch.bool),
|
|
|
|
)
|
|
|
|
|
|
|
|
padding_side = self.tokenizer.padding_side
|
|
|
|
chosen_attention_mask = [torch.ones_like(seq).bool() for seq in chosen_input_ids]
|
|
|
|
reject_attention_mask = [torch.ones_like(seq).bool() for seq in reject_input_ids]
|
|
|
|
|
|
|
|
(
|
|
|
|
chosen_input_ids,
|
|
|
|
chosen_attention_mask,
|
|
|
|
chosen_loss_mask,
|
|
|
|
reject_input_ids,
|
|
|
|
reject_attention_mask,
|
|
|
|
reject_loss_mask,
|
|
|
|
) = (
|
|
|
|
pad_to_max_len(chosen_input_ids, self.max_length, self.tokenizer.pad_token_id, padding_side=padding_side),
|
|
|
|
pad_to_max_len(chosen_attention_mask, self.max_length, False, padding_side=padding_side),
|
|
|
|
pad_to_max_len(chosen_loss_mask, self.max_length, False, padding_side=padding_side),
|
|
|
|
pad_to_max_len(reject_input_ids, self.max_length, self.tokenizer.pad_token_id, padding_side=padding_side),
|
|
|
|
pad_to_max_len(reject_attention_mask, self.max_length, False, padding_side=padding_side),
|
|
|
|
pad_to_max_len(reject_loss_mask, self.max_length, False, padding_side=padding_side),
|
|
|
|
)
|
|
|
|
|
|
|
|
return dict(
|
|
|
|
chosen_input_ids=chosen_input_ids,
|
|
|
|
chosen_attention_mask=chosen_attention_mask,
|
|
|
|
chosen_loss_mask=chosen_loss_mask,
|
|
|
|
reject_input_ids=reject_input_ids,
|
|
|
|
reject_attention_mask=reject_attention_mask,
|
|
|
|
reject_loss_mask=reject_loss_mask,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
[FP8] rebase main (#5963)
* add SimPO
* fix dataloader
* remove debug code
* add orpo
* fix style
* fix colossalai, transformers version
* fix colossalai, transformers version
* fix colossalai, transformers version
* fix torch colossalai version
* update transformers version
* [shardformer] DeepseekMoE support (#5871)
* [Feature] deepseek moe expert parallel implement
* [misc] fix typo, remove redundant file (#5867)
* [misc] fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Feature] deepseek support & unit test
* [misc] remove debug code & useless print
* [misc] fix typos (#5872)
* [Feature] remove modeling file, use auto config. (#5884)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [Deepseek] remove redundant code (#5888)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [misc] remove redundant code
* [Feature/deepseek] resolve comment. (#5889)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [misc] remove redundant code
* [misc] mv module replacement into if branch
* [misc] add some warning message and modify some code in unit test
* [misc] fix typos
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Hoxfix] Fix CUDA_DEVICE_MAX_CONNECTIONS for comm overlap
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Feat] Diffusion Model(PixArtAlpha/StableDiffusion3) Support (#5838)
* Diffusion Model Inference support
* Stable Diffusion 3 Support
* pixartalpha support
* [HotFix] CI,import,requirements-test for #5838 (#5892)
* [Hot Fix] CI,import,requirements-test
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Feature] Enable PP + SP for llama (#5868)
* fix cross-PP-stage position id length diff bug
* fix typo
* fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* use a one cross entropy func for all shardformer models
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [ShardFormer] Add Ulysses Sequence Parallelism support for Command-R, Qwen2 and ChatGLM (#5897)
* add benchmark for sft, dpo, simpo, orpo. Add benchmarking result. Support lora with gradient checkpoint
* fix style
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix eval
* hotfix citation
* [zero] support all-gather overlap (#5898)
* [zero] support all-gather overlap
* [zero] add overlap all-gather flag
* [misc] fix typo
* [zero] update api
* fix orpo cross entropy loss
* [Auto Parallel]: Speed up intra-op plan generation by 44% (#5446)
* Remove unnecessary calls to deepcopy
* Build DimSpec's difference dict only once
This change considerably speeds up construction speed of DimSpec objects. The difference_dict is the same for each DimSpec object, so a single copy of it is enough.
* Fix documentation of DimSpec's difference method
* [ShardFormer] fix qwen2 sp (#5903)
* [compatibility] support torch 2.2 (#5875)
* Support Pytorch 2.2.2
* keep build_on_pr file and update .compatibility
* fix object_to_tensor usage when torch>=2.3.0 (#5820)
* [misc] support torch2.3 (#5893)
* [misc] support torch2.3
* [devops] update compatibility ci
* [devops] update compatibility ci
* [devops] add debug
* [devops] add debug
* [devops] add debug
* [devops] add debug
* [devops] remove debug
* [devops] remove debug
* [release] update version (#5912)
* [plugin] support all-gather overlap for hybrid parallel (#5919)
* [plugin] fixed all-gather overlap support for hybrid parallel
* add kto
* fix style, add kto data sample
* [Examples] Add lazy init to OPT and GPT examples (#5924)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [ColossalChat] Hotfix for ColossalChat (#5910)
* add ignore and tiny llama
* fix path issue
* run style
* fix issue
* update bash
* add ignore and tiny llama
* fix path issue
* run style
* fix issue
* update bash
* fix ddp issue
* add Qwen 1.5 32B
* refactor tokenization
* [FIX BUG] UnboundLocalError: cannot access local variable 'default_conversation' where it is not associated with a value (#5931)
* cannot access local variable 'default_conversation' where it is not associated with a value
set default value for 'default_conversation'
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* fix test data
* refactor evaluation
* remove real data path
* remove real data path
* Add n_fused as an input from native_module (#5894)
* [FIX BUG] convert env param to int in (#5934)
* [Hotfix] Fix ZeRO typo #5936
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Feature] Add a switch to control whether the model checkpoint needs to be saved after each epoch ends (#5941)
* Add a switch to control whether the model checkpoint needs to be saved after each epoch ends
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* fix style
* fix style
* fix style
* [shardformer] hotfix attn mask (#5945)
* [shardformer] hotfix attn mask (#5947)
* [Feat] Distrifusion Acceleration Support for Diffusion Inference (#5895)
* Distrifusion Support source
* comp comm overlap optimization
* sd3 benchmark
* pixart distrifusion bug fix
* sd3 bug fix and benchmark
* generation bug fix
* naming fix
* add docstring, fix counter and shape error
* add reference
* readme and requirement
* [zero] hotfix update master params (#5951)
* [release] update version (#5952)
* [Chat] Fix lora (#5946)
* fix merging
* remove filepath
* fix style
* Update README.md (#5958)
* [hotfix] Remove unused plan section (#5957)
* remove readme
* fix readme
* update
* [test] add mixtral for sequence classification
* [test] add mixtral transformer test
* [moe] fix plugin
* [test] mixtra pp shard test
* [chore] handle non member group
* [zero] solve hang
* [test] pass mixtral shardformer test
* [moe] implement transit between non moe tp and ep
* [zero] solve hang
* [misc] solve booster hang by rename the variable
* solve hang when parallel mode = pp + dp
* [moe] implement submesh initialization
* [moe] add mixtral dp grad scaling when not all experts are activated
* [chore] manually revert unintended commit
* [chore] trivial fix
* [chore] arg pass & remove drop token
* [test] add mixtral modelling test
* [moe] implement tp
* [moe] test deepseek
* [moe] clean legacy code
* [Feature] MoE Ulysses Support (#5918)
* moe sp support
* moe sp bug solve
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [chore] minor fix
* [moe] init moe plugin comm setting with sp
* moe sp + ep bug fix
* [moe] finalize test (no pp)
* [moe] full test for deepseek and mixtral (pp + sp to fix)
* [chore] minor fix after rebase
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* [chore] solve moe ckpt test failure and some other arg pass failure
* [moe] remove ops
* [test] fix test: test_zero1_2
* [bug] fix: somehow logger hangs the program
* [moe] deepseek moe sp support
* [test] add check
* [deepseek] replace attn (a workaround for bug in transformers)
* [misc] skip redunant test
* [misc] remove debug/print code
* [moe] refactor mesh assignment
* Revert "[moe] implement submesh initialization"
This reverts commit 2f9bce6686d1415a83d5726dc5ff02222c742582.
* [chore] change moe_pg_mesh to private
* [misc] remove incompatible test config
* [misc] fix ci failure: change default value to false in moe plugin
* [misc] remove useless condition
* [chore] docstring
* [moe] remove force_overlap_comm flag and add warning instead
* [doc] add MoeHybridParallelPlugin docstring
* [moe] solve dp axis issue
* [chore] remove redundant test case, print string & reduce test tokens
* [feat] Dist Loader for Eval (#5950)
* support auto distributed data loader
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* support auto distributed data loader
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix tp error
* remove unused parameters
* remove unused
* update inference
* update docs
* update inference
---------
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [lora] lora support hybrid parallel plugin (#5956)
* lora support hybrid plugin
* fix
* fix
* fix
* fix
* fp8 operators for compressed communication
cast_to_fp8, cast_from_fp8, all_reduce_fp8
* fix scaling algorithm in FP8 casting
* support fp8 communication in pipeline parallelism
* add fp8_communication flag in the script
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* shardformer fp8
* fix rebase
* remove all to all
* fix shardformer fp8 communication training degradation
* [fp8] support all-gather flat tensor (#5932)
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* Update low_level_optim.py
---------
Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: Haze188 <haze188@qq.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: zhurunhua <1281592874@qq.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: Gao, Ruiyuan <905370712@qq.com>
Co-authored-by: hxwang <wang1570@e.ntu.edu.sg>
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: Wang Binluo <32676639+wangbluo@users.noreply.github.com>
Co-authored-by: HangXu <hangxu0304@gmail.com>
2024-08-06 08:29:37 +00:00
|
|
|
@dataclass
|
|
|
|
class DataCollatorForKTODataset(object):
|
|
|
|
"""
|
|
|
|
Collate instances for kto dataset.
|
|
|
|
Each input instance is a tokenized dictionary with fields
|
|
|
|
`prompt`(List[int]), `completion`(List[int]) and `label`(bool).
|
|
|
|
Each output instance is a tokenized dictionary with fields
|
|
|
|
`kl_input_ids`(List[int]), `kl_attention_mask`(List[int]) and `kl_loss_mask`(List[int]).
|
|
|
|
`input_ids`(List[int]), `attention_mask`(List[int]), `loss_mask`(List[int]) and `label`(bool).
|
|
|
|
"""
|
|
|
|
|
|
|
|
tokenizer: PreTrainedTokenizer
|
|
|
|
max_length: int = 4096
|
|
|
|
ignore_index: int = -100
|
|
|
|
|
|
|
|
def __call__(self, instances: Sequence[Dict[str, List[int]]]) -> Dict[str, torch.Tensor]:
|
|
|
|
"""
|
|
|
|
|
|
|
|
Args:
|
|
|
|
instances (`Sequence[Dict[str, List[int]]]`):
|
|
|
|
Mini-batch samples, each sample is stored in an individual dictionary contains the following fields:
|
|
|
|
`prompt`(List[int]), `completion`(List[int]) and `label`(bool, if the sample is desirable or not).
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
(`Dict[str, torch.Tensor]`): Contains the following `torch.Tensor`:
|
|
|
|
`input_ids`: `torch.Tensor` of shape (bsz, max_len);
|
|
|
|
`attention_mask`: `torch.BoolTensor` of shape (bsz, max_len);
|
|
|
|
`labels`: `torch.Tensor` of shape (bsz, max_len), which contains `IGNORE_INDEX`.
|
|
|
|
"""
|
|
|
|
assert isinstance(self.tokenizer.pad_token_id, int) and self.tokenizer.pad_token_id >= 0, (
|
|
|
|
f"`{self.tokenizer.__class__.__name__}.pad_token_id` must be a valid non-negative integer index value, "
|
|
|
|
f"but now `{self.tokenizer.pad_token_id}`"
|
|
|
|
)
|
|
|
|
# prepare the preference data
|
|
|
|
prompt = [torch.LongTensor(instance["prompt"]) for instance in instances]
|
|
|
|
prompt_zeros = [torch.zeros_like(t) for t in prompt]
|
|
|
|
completion = [torch.LongTensor(instance["completion"]) for instance in instances]
|
|
|
|
completion_ones = [torch.ones_like(t) for t in completion]
|
|
|
|
label = [torch.tensor(instance["label"], dtype=torch.bool) for instance in instances]
|
|
|
|
input_ids = [torch.cat([prompt[i], completion[i]], dim=-1) for i in range(len(instances))]
|
|
|
|
loss_mask = [torch.cat([prompt_zeros[i], completion_ones[i]], dim=-1) for i in range(len(instances))]
|
|
|
|
# right padding
|
|
|
|
input_ids = torch.nn.utils.rnn.pad_sequence(
|
|
|
|
sequences=input_ids,
|
|
|
|
batch_first=True,
|
|
|
|
padding_value=self.tokenizer.pad_token_id,
|
|
|
|
) # (bsz, max_len)
|
|
|
|
loss_mask = torch.nn.utils.rnn.pad_sequence(
|
|
|
|
sequences=loss_mask, batch_first=True, padding_value=0
|
|
|
|
) # (bsz, max_len)
|
|
|
|
to_pad = self.max_length - input_ids.size(1)
|
|
|
|
input_ids = F.pad(input_ids, (0, to_pad), value=self.tokenizer.pad_token_id)
|
|
|
|
loss_mask = F.pad(loss_mask, (0, to_pad), value=0)
|
|
|
|
attention_mask = input_ids.ne(self.tokenizer.pad_token_id) # `torch.BoolTensor`, (bsz, max_len)
|
|
|
|
|
|
|
|
# prepare kt data
|
|
|
|
kl_completion = completion[::-1] # y'
|
|
|
|
kl_completion_ones = [torch.ones_like(t) for t in kl_completion]
|
|
|
|
kl_input_ids = [torch.cat([prompt[i], kl_completion[i]], dim=-1) for i in range(len(instances))]
|
|
|
|
kl_loss_mask = [torch.cat([prompt_zeros[i], kl_completion_ones[i]], dim=-1) for i in range(len(instances))]
|
|
|
|
# right padding
|
|
|
|
kl_input_ids = torch.nn.utils.rnn.pad_sequence(
|
|
|
|
sequences=kl_input_ids,
|
|
|
|
batch_first=True,
|
|
|
|
padding_value=self.tokenizer.pad_token_id,
|
|
|
|
) # (bsz, max_len)
|
|
|
|
kl_loss_mask = torch.nn.utils.rnn.pad_sequence(
|
|
|
|
sequences=kl_loss_mask, batch_first=True, padding_value=0
|
|
|
|
) # (bsz, max_len)
|
|
|
|
to_pad = self.max_length - kl_input_ids.size(1)
|
|
|
|
kl_input_ids = F.pad(kl_input_ids, (0, to_pad), value=self.tokenizer.pad_token_id)
|
|
|
|
kl_loss_mask = F.pad(kl_loss_mask, (0, to_pad), value=0)
|
|
|
|
kl_attention_mask = kl_input_ids.ne(self.tokenizer.pad_token_id) # `torch.BoolTensor`, (bsz, max_len)
|
|
|
|
data_dict = {
|
|
|
|
"input_ids": input_ids,
|
|
|
|
"attention_mask": attention_mask,
|
|
|
|
"loss_mask": loss_mask,
|
|
|
|
"label": torch.stack(label),
|
|
|
|
"kl_input_ids": kl_input_ids,
|
|
|
|
"kl_attention_mask": kl_attention_mask,
|
|
|
|
"kl_loss_mask": kl_loss_mask,
|
|
|
|
}
|
|
|
|
return data_dict
|
|
|
|
|
|
|
|
|
2024-03-29 06:12:29 +00:00
|
|
|
class StatefulDistributedSampler(DistributedSampler):
|
|
|
|
def __init__(
|
|
|
|
self,
|
2024-06-07 09:43:42 +00:00
|
|
|
dataset: Dataset,
|
2024-03-29 06:12:29 +00:00
|
|
|
num_replicas: Optional[int] = None,
|
|
|
|
rank: Optional[int] = None,
|
|
|
|
shuffle: bool = True,
|
|
|
|
seed: int = 0,
|
|
|
|
drop_last: bool = False,
|
|
|
|
) -> None:
|
2024-06-07 09:43:42 +00:00
|
|
|
super().__init__(dataset, num_replicas, rank, shuffle, seed, drop_last)
|
|
|
|
self.start_index: int = 0
|
2024-03-29 06:12:29 +00:00
|
|
|
|
|
|
|
def __iter__(self) -> Iterator:
|
2024-06-07 09:43:42 +00:00
|
|
|
iterator = super().__iter__()
|
|
|
|
indices = list(iterator)
|
|
|
|
indices = indices[self.start_index :]
|
|
|
|
return iter(indices)
|
2024-03-29 06:12:29 +00:00
|
|
|
|
|
|
|
def __len__(self) -> int:
|
|
|
|
return self.num_samples - self.start_index
|
|
|
|
|
|
|
|
def set_start_index(self, start_index: int) -> None:
|
|
|
|
self.start_index = start_index
|