ColossalAI/applications/ColossalChat/coati/dataset/loader.py

347 lines
15 KiB
Python
Raw Normal View History

[ColossalChat] Update RLHF V2 (#5286) * Add dpo. Fix sft, ppo, lora. Refactor all * fix and tested ppo * 2 nd round refactor * add ci tests * fix ci * fix ci * fix readme, style * fix readme style * fix style, fix benchmark * reproduce benchmark result, remove useless files * rename to ColossalChat * use new image * fix ci workflow * fix ci * use local model/tokenizer for ci tests * fix ci * fix ci * fix ci * fix ci timeout * fix rm progress bar. fix ci timeout * fix ci * fix ci typo * remove 3d plugin from ci temporary * test environment * cannot save optimizer * support chat template * fix readme * fix path * test ci locally * restore build_or_pr * fix ci data path * fix benchmark * fix ci, move ci tests to 3080, disable fast tokenizer * move ci to 85 * support flash attention 2 * add all-in-one data preparation script. Fix colossal-llama2-chat chat template * add hardware requirements * move ci test data * fix save_model, add unwrap * fix missing bos * fix missing bos; support grad accumulation with gemini * fix ci * fix ci * fix ci * fix llama2 chat template config * debug sft * debug sft * fix colossalai version requirement * fix ci * add sanity check to prevent NaN loss * fix requirements * add dummy data generation script * add dummy data generation script * add dummy data generation script * add dummy data generation script * update readme * update readme * update readme and ignore * fix logger bug * support parallel_output * modify data preparation logic * fix tokenization * update lr * fix inference * run pre-commit --------- Co-authored-by: Tong Li <tong.li352711588@gmail.com>
2024-03-29 06:12:29 +00:00
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Dataloader for sft, dpo, ppo
"""
import os
from dataclasses import dataclass
from typing import Dict, Iterator, List, Optional, Sequence, Union
[ColossalChat] Update RLHF V2 (#5286) * Add dpo. Fix sft, ppo, lora. Refactor all * fix and tested ppo * 2 nd round refactor * add ci tests * fix ci * fix ci * fix readme, style * fix readme style * fix style, fix benchmark * reproduce benchmark result, remove useless files * rename to ColossalChat * use new image * fix ci workflow * fix ci * use local model/tokenizer for ci tests * fix ci * fix ci * fix ci * fix ci timeout * fix rm progress bar. fix ci timeout * fix ci * fix ci typo * remove 3d plugin from ci temporary * test environment * cannot save optimizer * support chat template * fix readme * fix path * test ci locally * restore build_or_pr * fix ci data path * fix benchmark * fix ci, move ci tests to 3080, disable fast tokenizer * move ci to 85 * support flash attention 2 * add all-in-one data preparation script. Fix colossal-llama2-chat chat template * add hardware requirements * move ci test data * fix save_model, add unwrap * fix missing bos * fix missing bos; support grad accumulation with gemini * fix ci * fix ci * fix ci * fix llama2 chat template config * debug sft * debug sft * fix colossalai version requirement * fix ci * add sanity check to prevent NaN loss * fix requirements * add dummy data generation script * add dummy data generation script * add dummy data generation script * add dummy data generation script * update readme * update readme * update readme and ignore * fix logger bug * support parallel_output * modify data preparation logic * fix tokenization * update lr * fix inference * run pre-commit --------- Co-authored-by: Tong Li <tong.li352711588@gmail.com>
2024-03-29 06:12:29 +00:00
import torch
import torch.nn.functional as F
from coati.dataset.utils import chuncate_sequence, pad_to_max_len
from datasets import Dataset as HFDataset
from datasets import dataset_dict, load_from_disk
from torch.utils.data import ConcatDataset, Dataset, DistributedSampler
[ColossalChat] Update RLHF V2 (#5286) * Add dpo. Fix sft, ppo, lora. Refactor all * fix and tested ppo * 2 nd round refactor * add ci tests * fix ci * fix ci * fix readme, style * fix readme style * fix style, fix benchmark * reproduce benchmark result, remove useless files * rename to ColossalChat * use new image * fix ci workflow * fix ci * use local model/tokenizer for ci tests * fix ci * fix ci * fix ci * fix ci timeout * fix rm progress bar. fix ci timeout * fix ci * fix ci typo * remove 3d plugin from ci temporary * test environment * cannot save optimizer * support chat template * fix readme * fix path * test ci locally * restore build_or_pr * fix ci data path * fix benchmark * fix ci, move ci tests to 3080, disable fast tokenizer * move ci to 85 * support flash attention 2 * add all-in-one data preparation script. Fix colossal-llama2-chat chat template * add hardware requirements * move ci test data * fix save_model, add unwrap * fix missing bos * fix missing bos; support grad accumulation with gemini * fix ci * fix ci * fix ci * fix llama2 chat template config * debug sft * debug sft * fix colossalai version requirement * fix ci * add sanity check to prevent NaN loss * fix requirements * add dummy data generation script * add dummy data generation script * add dummy data generation script * add dummy data generation script * update readme * update readme * update readme and ignore * fix logger bug * support parallel_output * modify data preparation logic * fix tokenization * update lr * fix inference * run pre-commit --------- Co-authored-by: Tong Li <tong.li352711588@gmail.com>
2024-03-29 06:12:29 +00:00
from transformers.tokenization_utils import PreTrainedTokenizer
DatasetType = Union[Dataset, ConcatDataset, dataset_dict.Dataset]
PathType = Union[str, os.PathLike]
def load_tokenized_dataset(
dataset_paths: Union[PathType, List[PathType]], mode: str = "train", **kwargs
) -> Optional[DatasetType]:
"""
Load pre-tokenized dataset.
Each instance of dataset is a dictionary with
`{'input_ids': List[int], 'labels': List[int], sequence: str}` format.
"""
[FP8] rebase main (#5963) * add SimPO * fix dataloader * remove debug code * add orpo * fix style * fix colossalai, transformers version * fix colossalai, transformers version * fix colossalai, transformers version * fix torch colossalai version * update transformers version * [shardformer] DeepseekMoE support (#5871) * [Feature] deepseek moe expert parallel implement * [misc] fix typo, remove redundant file (#5867) * [misc] fix typo * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] deepseek support & unit test * [misc] remove debug code & useless print * [misc] fix typos (#5872) * [Feature] remove modeling file, use auto config. (#5884) * [misc] fix typos * [Feature] deepseek support via auto model, remove modeling file * [misc] delete useless file * [misc] fix typos * [Deepseek] remove redundant code (#5888) * [misc] fix typos * [Feature] deepseek support via auto model, remove modeling file * [misc] delete useless file * [misc] fix typos * [misc] remove redundant code * [Feature/deepseek] resolve comment. (#5889) * [misc] fix typos * [Feature] deepseek support via auto model, remove modeling file * [misc] delete useless file * [misc] fix typos * [misc] remove redundant code * [misc] mv module replacement into if branch * [misc] add some warning message and modify some code in unit test * [misc] fix typos --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Hoxfix] Fix CUDA_DEVICE_MAX_CONNECTIONS for comm overlap Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [Feat] Diffusion Model(PixArtAlpha/StableDiffusion3) Support (#5838) * Diffusion Model Inference support * Stable Diffusion 3 Support * pixartalpha support * [HotFix] CI,import,requirements-test for #5838 (#5892) * [Hot Fix] CI,import,requirements-test --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] Enable PP + SP for llama (#5868) * fix cross-PP-stage position id length diff bug * fix typo * fix typo * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * use a one cross entropy func for all shardformer models --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [ShardFormer] Add Ulysses Sequence Parallelism support for Command-R, Qwen2 and ChatGLM (#5897) * add benchmark for sft, dpo, simpo, orpo. Add benchmarking result. Support lora with gradient checkpoint * fix style * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix eval * hotfix citation * [zero] support all-gather overlap (#5898) * [zero] support all-gather overlap * [zero] add overlap all-gather flag * [misc] fix typo * [zero] update api * fix orpo cross entropy loss * [Auto Parallel]: Speed up intra-op plan generation by 44% (#5446) * Remove unnecessary calls to deepcopy * Build DimSpec's difference dict only once This change considerably speeds up construction speed of DimSpec objects. The difference_dict is the same for each DimSpec object, so a single copy of it is enough. * Fix documentation of DimSpec's difference method * [ShardFormer] fix qwen2 sp (#5903) * [compatibility] support torch 2.2 (#5875) * Support Pytorch 2.2.2 * keep build_on_pr file and update .compatibility * fix object_to_tensor usage when torch>=2.3.0 (#5820) * [misc] support torch2.3 (#5893) * [misc] support torch2.3 * [devops] update compatibility ci * [devops] update compatibility ci * [devops] add debug * [devops] add debug * [devops] add debug * [devops] add debug * [devops] remove debug * [devops] remove debug * [release] update version (#5912) * [plugin] support all-gather overlap for hybrid parallel (#5919) * [plugin] fixed all-gather overlap support for hybrid parallel * add kto * fix style, add kto data sample * [Examples] Add lazy init to OPT and GPT examples (#5924) Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [ColossalChat] Hotfix for ColossalChat (#5910) * add ignore and tiny llama * fix path issue * run style * fix issue * update bash * add ignore and tiny llama * fix path issue * run style * fix issue * update bash * fix ddp issue * add Qwen 1.5 32B * refactor tokenization * [FIX BUG] UnboundLocalError: cannot access local variable 'default_conversation' where it is not associated with a value (#5931) * cannot access local variable 'default_conversation' where it is not associated with a value set default value for 'default_conversation' * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * fix test data * refactor evaluation * remove real data path * remove real data path * Add n_fused as an input from native_module (#5894) * [FIX BUG] convert env param to int in (#5934) * [Hotfix] Fix ZeRO typo #5936 Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [Feature] Add a switch to control whether the model checkpoint needs to be saved after each epoch ends (#5941) * Add a switch to control whether the model checkpoint needs to be saved after each epoch ends * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * fix style * fix style * fix style * [shardformer] hotfix attn mask (#5945) * [shardformer] hotfix attn mask (#5947) * [Feat] Distrifusion Acceleration Support for Diffusion Inference (#5895) * Distrifusion Support source * comp comm overlap optimization * sd3 benchmark * pixart distrifusion bug fix * sd3 bug fix and benchmark * generation bug fix * naming fix * add docstring, fix counter and shape error * add reference * readme and requirement * [zero] hotfix update master params (#5951) * [release] update version (#5952) * [Chat] Fix lora (#5946) * fix merging * remove filepath * fix style * Update README.md (#5958) * [hotfix] Remove unused plan section (#5957) * remove readme * fix readme * update * [test] add mixtral for sequence classification * [test] add mixtral transformer test * [moe] fix plugin * [test] mixtra pp shard test * [chore] handle non member group * [zero] solve hang * [test] pass mixtral shardformer test * [moe] implement transit between non moe tp and ep * [zero] solve hang * [misc] solve booster hang by rename the variable * solve hang when parallel mode = pp + dp * [moe] implement submesh initialization * [moe] add mixtral dp grad scaling when not all experts are activated * [chore] manually revert unintended commit * [chore] trivial fix * [chore] arg pass & remove drop token * [test] add mixtral modelling test * [moe] implement tp * [moe] test deepseek * [moe] clean legacy code * [Feature] MoE Ulysses Support (#5918) * moe sp support * moe sp bug solve * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [chore] minor fix * [moe] init moe plugin comm setting with sp * moe sp + ep bug fix * [moe] finalize test (no pp) * [moe] full test for deepseek and mixtral (pp + sp to fix) * [chore] minor fix after rebase * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [chore] solve moe ckpt test failure and some other arg pass failure * [moe] remove ops * [test] fix test: test_zero1_2 * [bug] fix: somehow logger hangs the program * [moe] deepseek moe sp support * [test] add check * [deepseek] replace attn (a workaround for bug in transformers) * [misc] skip redunant test * [misc] remove debug/print code * [moe] refactor mesh assignment * Revert "[moe] implement submesh initialization" This reverts commit 2f9bce6686d1415a83d5726dc5ff02222c742582. * [chore] change moe_pg_mesh to private * [misc] remove incompatible test config * [misc] fix ci failure: change default value to false in moe plugin * [misc] remove useless condition * [chore] docstring * [moe] remove force_overlap_comm flag and add warning instead * [doc] add MoeHybridParallelPlugin docstring * [moe] solve dp axis issue * [chore] remove redundant test case, print string & reduce test tokens * [feat] Dist Loader for Eval (#5950) * support auto distributed data loader * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * support auto distributed data loader * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix tp error * remove unused parameters * remove unused * update inference * update docs * update inference --------- Co-authored-by: Michelle <qianranma8@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [lora] lora support hybrid parallel plugin (#5956) * lora support hybrid plugin * fix * fix * fix * fix * fp8 operators for compressed communication cast_to_fp8, cast_from_fp8, all_reduce_fp8 * fix scaling algorithm in FP8 casting * support fp8 communication in pipeline parallelism * add fp8_communication flag in the script * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix typo * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * shardformer fp8 * fix rebase * remove all to all * fix shardformer fp8 communication training degradation * [fp8] support all-gather flat tensor (#5932) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * Update low_level_optim.py --------- Co-authored-by: YeAnbang <anbangy2@outlook.com> Co-authored-by: Haze188 <haze188@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com> Co-authored-by: Guangyao Zhang <xjtu521@qq.com> Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com> Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: zhurunhua <1281592874@qq.com> Co-authored-by: Insu Jang <insujang@umich.edu> Co-authored-by: Gao, Ruiyuan <905370712@qq.com> Co-authored-by: hxwang <wang1570@e.ntu.edu.sg> Co-authored-by: Michelle <qianranma8@gmail.com> Co-authored-by: Wang Binluo <32676639+wangbluo@users.noreply.github.com> Co-authored-by: HangXu <hangxu0304@gmail.com>
2024-08-06 08:29:37 +00:00
if not dataset_paths:
return None
[ColossalChat] Update RLHF V2 (#5286) * Add dpo. Fix sft, ppo, lora. Refactor all * fix and tested ppo * 2 nd round refactor * add ci tests * fix ci * fix ci * fix readme, style * fix readme style * fix style, fix benchmark * reproduce benchmark result, remove useless files * rename to ColossalChat * use new image * fix ci workflow * fix ci * use local model/tokenizer for ci tests * fix ci * fix ci * fix ci * fix ci timeout * fix rm progress bar. fix ci timeout * fix ci * fix ci typo * remove 3d plugin from ci temporary * test environment * cannot save optimizer * support chat template * fix readme * fix path * test ci locally * restore build_or_pr * fix ci data path * fix benchmark * fix ci, move ci tests to 3080, disable fast tokenizer * move ci to 85 * support flash attention 2 * add all-in-one data preparation script. Fix colossal-llama2-chat chat template * add hardware requirements * move ci test data * fix save_model, add unwrap * fix missing bos * fix missing bos; support grad accumulation with gemini * fix ci * fix ci * fix ci * fix llama2 chat template config * debug sft * debug sft * fix colossalai version requirement * fix ci * add sanity check to prevent NaN loss * fix requirements * add dummy data generation script * add dummy data generation script * add dummy data generation script * add dummy data generation script * update readme * update readme * update readme and ignore * fix logger bug * support parallel_output * modify data preparation logic * fix tokenization * update lr * fix inference * run pre-commit --------- Co-authored-by: Tong Li <tong.li352711588@gmail.com>
2024-03-29 06:12:29 +00:00
mode_map = kwargs.get("mode_map", {"train": "train", "dev": "validation", "test": "test"})
assert mode in tuple(mode_map), f"Unsupported mode {mode}, it must be in {tuple(mode_map)}"
if isinstance(dataset_paths, (str, os.PathLike)):
dataset_paths = [dataset_paths]
datasets = [] # `List[datasets.dataset_dict.Dataset]`
for ds_path in dataset_paths:
ds_path = os.path.abspath(ds_path)
assert os.path.exists(ds_path), f"Not existed file path {ds_path}"
ds_dict = load_from_disk(dataset_path=ds_path, keep_in_memory=False)
if isinstance(ds_dict, HFDataset):
datasets.append(ds_dict)
else:
if mode_map[mode] in ds_dict:
datasets.append(ds_dict[mode_map[mode]])
if len(datasets) == 0:
return None
if len(datasets) == 1:
return datasets.pop()
return ConcatDataset(datasets=datasets)
@dataclass
class DataCollatorForSupervisedDataset(object):
"""
Collate instances for supervised dataset.
Each instance is a tokenized dictionary with fields
`input_ids`(List[int]), `labels`(List[int]) and `sequence`(str).
"""
tokenizer: PreTrainedTokenizer
max_length: int = 4096
ignore_index: int = -100
def __call__(self, instances: Sequence[Dict[str, List[int]]]) -> Dict[str, torch.Tensor]:
"""
Args:
instances (`Sequence[Dict[str, List[int]]]`):
Mini-batch samples, each sample is stored in an individual dictionary.
Returns:
(`Dict[str, torch.Tensor]`): Contains the following `torch.Tensor`:
`input_ids`: `torch.Tensor` of shape (bsz, max_len);
`attention_mask`: `torch.BoolTensor` of shape (bsz, max_len);
`labels`: `torch.Tensor` of shape (bsz, max_len), which contains `IGNORE_INDEX`.
"""
assert isinstance(self.tokenizer.pad_token_id, int) and self.tokenizer.pad_token_id >= 0, (
f"`{self.tokenizer.__class__.__name__}.pad_token_id` must be a valid non-negative integer index value, "
f"but now `{self.tokenizer.pad_token_id}`"
)
# `List[torch.Tensor]`
batch_input_ids = [
(
torch.LongTensor(instance["input_ids"][: self.max_length])
if len(instance["input_ids"]) > self.max_length
else torch.LongTensor(instance["input_ids"])
)
[ColossalChat] Update RLHF V2 (#5286) * Add dpo. Fix sft, ppo, lora. Refactor all * fix and tested ppo * 2 nd round refactor * add ci tests * fix ci * fix ci * fix readme, style * fix readme style * fix style, fix benchmark * reproduce benchmark result, remove useless files * rename to ColossalChat * use new image * fix ci workflow * fix ci * use local model/tokenizer for ci tests * fix ci * fix ci * fix ci * fix ci timeout * fix rm progress bar. fix ci timeout * fix ci * fix ci typo * remove 3d plugin from ci temporary * test environment * cannot save optimizer * support chat template * fix readme * fix path * test ci locally * restore build_or_pr * fix ci data path * fix benchmark * fix ci, move ci tests to 3080, disable fast tokenizer * move ci to 85 * support flash attention 2 * add all-in-one data preparation script. Fix colossal-llama2-chat chat template * add hardware requirements * move ci test data * fix save_model, add unwrap * fix missing bos * fix missing bos; support grad accumulation with gemini * fix ci * fix ci * fix ci * fix llama2 chat template config * debug sft * debug sft * fix colossalai version requirement * fix ci * add sanity check to prevent NaN loss * fix requirements * add dummy data generation script * add dummy data generation script * add dummy data generation script * add dummy data generation script * update readme * update readme * update readme and ignore * fix logger bug * support parallel_output * modify data preparation logic * fix tokenization * update lr * fix inference * run pre-commit --------- Co-authored-by: Tong Li <tong.li352711588@gmail.com>
2024-03-29 06:12:29 +00:00
for instance in instances
]
batch_labels = [
(
torch.LongTensor(instance["labels"][: self.max_length])
if len(instance["labels"]) > self.max_length
else torch.LongTensor(instance["labels"])
)
[ColossalChat] Update RLHF V2 (#5286) * Add dpo. Fix sft, ppo, lora. Refactor all * fix and tested ppo * 2 nd round refactor * add ci tests * fix ci * fix ci * fix readme, style * fix readme style * fix style, fix benchmark * reproduce benchmark result, remove useless files * rename to ColossalChat * use new image * fix ci workflow * fix ci * use local model/tokenizer for ci tests * fix ci * fix ci * fix ci * fix ci timeout * fix rm progress bar. fix ci timeout * fix ci * fix ci typo * remove 3d plugin from ci temporary * test environment * cannot save optimizer * support chat template * fix readme * fix path * test ci locally * restore build_or_pr * fix ci data path * fix benchmark * fix ci, move ci tests to 3080, disable fast tokenizer * move ci to 85 * support flash attention 2 * add all-in-one data preparation script. Fix colossal-llama2-chat chat template * add hardware requirements * move ci test data * fix save_model, add unwrap * fix missing bos * fix missing bos; support grad accumulation with gemini * fix ci * fix ci * fix ci * fix llama2 chat template config * debug sft * debug sft * fix colossalai version requirement * fix ci * add sanity check to prevent NaN loss * fix requirements * add dummy data generation script * add dummy data generation script * add dummy data generation script * add dummy data generation script * update readme * update readme * update readme and ignore * fix logger bug * support parallel_output * modify data preparation logic * fix tokenization * update lr * fix inference * run pre-commit --------- Co-authored-by: Tong Li <tong.li352711588@gmail.com>
2024-03-29 06:12:29 +00:00
for instance in instances
]
if self.tokenizer.padding_side == "right":
input_ids = torch.nn.utils.rnn.pad_sequence(
sequences=batch_input_ids,
batch_first=True,
padding_value=self.tokenizer.pad_token_id,
) # (bsz, max_len)
labels = torch.nn.utils.rnn.pad_sequence(
sequences=batch_labels,
batch_first=True,
padding_value=self.ignore_index,
) # (bsz, max_len)
# pad to max
to_pad = self.max_length - input_ids.size(1)
input_ids = F.pad(input_ids, (0, to_pad), value=self.tokenizer.pad_token_id)
labels = F.pad(labels, (0, to_pad), value=self.ignore_index)
elif self.tokenizer.padding_side == "left":
reversed_input_ids = [seq.flip(dims=(0,)) for seq in batch_input_ids]
reversed_input_ids = torch.nn.utils.rnn.pad_sequence(
sequences=reversed_input_ids,
batch_first=True,
padding_value=self.tokenizer.pad_token_id,
) # (bsz, max_len)
input_ids = torch.flip(reversed_input_ids, dims=(1,)) # (bsz, max_len)
reversed_labels = [seq.flip(dims=(0,)) for seq in batch_labels]
reversed_labels = torch.nn.utils.rnn.pad_sequence(
sequences=reversed_labels,
batch_first=True,
padding_value=self.ignore_index,
) # (bsz, max_len)
labels = torch.flip(reversed_labels, dims=(1,)) # (bsz, max_len)
else:
raise RuntimeError(
f"`{self.tokenizer.__class__.__name__}.padding_side` can only be `left` or `right`, "
f"but now `{self.tokenizer.padding_side}`"
)
attention_mask = input_ids.ne(self.tokenizer.pad_token_id) # `torch.BoolTensor`, (bsz, max_len)
return dict(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
@dataclass
class DataCollatorForPromptDataset(DataCollatorForSupervisedDataset):
def __call__(self, instances: Sequence[Dict[str, List[int]]]) -> Dict[str, torch.Tensor]:
"""
Args:
instances (`Sequence[Dict[str, List[int]]]`):
Mini-batch samples, each sample is stored in an individual dictionary.
Returns:
(`Dict[str, torch.Tensor]`): Contains the following `torch.Tensor`:
`input_ids`: `torch.Tensor` of shape (bsz, max_len);
`attention_mask`: `torch.BoolTensor` of shape (bsz, max_len);
"""
instances = [{"input_ids": ins["input_ids"], "labels": ins["input_ids"]} for ins in instances]
ret = super().__call__(instances=instances)
input_ids = F.pad(
ret["input_ids"], (self.max_length - ret["input_ids"].size(1), 0), value=self.tokenizer.pad_token_id
)
attention_mask = F.pad(ret["attention_mask"], (self.max_length - ret["attention_mask"].size(1), 0), value=False)
return {"input_ids": input_ids, "attention_mask": attention_mask}
@dataclass
class DataCollatorForPreferenceDataset(object):
"""
Collate instances for supervised dataset.
Each instance is a tokenized dictionary with fields
`input_ids`(List[int]), `labels`(List[int]) and `sequence`(str).
"""
tokenizer: PreTrainedTokenizer
max_length: int = 4096
def __call__(self, instances: Sequence[Dict[str, List[int]]]) -> Dict[str, torch.Tensor]:
"""
Args:
instances (`Sequence[Dict[str, List[int]]]`):
Mini-batch samples, each sample is stored in an individual dictionary.
Returns:
(`Dict[str, torch.Tensor]`): Contains the following `torch.Tensor`:
`input_ids`: `torch.Tensor` of shape (bsz, max_len);
`attention_mask`: `torch.BoolTensor` of shape (bsz, max_len);
`labels`: `torch.Tensor` of shape (bsz, max_len), which contains `IGNORE_INDEX`.
"""
assert isinstance(self.tokenizer.pad_token_id, int) and self.tokenizer.pad_token_id >= 0, (
f"`{self.tokenizer.__class__.__name__}.pad_token_id` must be a valid non-negative integer index value, "
f"but now `{self.tokenizer.pad_token_id}`"
)
(
chosen_input_ids,
chosen_loss_mask, # [batch_size * seq_len]
reject_input_ids,
reject_loss_mask,
) = (
chuncate_sequence([ins["chosen_input_ids"] for ins in instances], self.max_length, torch.int64),
chuncate_sequence([ins["chosen_loss_mask"] for ins in instances], self.max_length, torch.bool),
chuncate_sequence([ins["rejected_input_ids"] for ins in instances], self.max_length, torch.int64),
chuncate_sequence([ins["rejected_loss_mask"] for ins in instances], self.max_length, torch.bool),
)
padding_side = self.tokenizer.padding_side
chosen_attention_mask = [torch.ones_like(seq).bool() for seq in chosen_input_ids]
reject_attention_mask = [torch.ones_like(seq).bool() for seq in reject_input_ids]
(
chosen_input_ids,
chosen_attention_mask,
chosen_loss_mask,
reject_input_ids,
reject_attention_mask,
reject_loss_mask,
) = (
pad_to_max_len(chosen_input_ids, self.max_length, self.tokenizer.pad_token_id, padding_side=padding_side),
pad_to_max_len(chosen_attention_mask, self.max_length, False, padding_side=padding_side),
pad_to_max_len(chosen_loss_mask, self.max_length, False, padding_side=padding_side),
pad_to_max_len(reject_input_ids, self.max_length, self.tokenizer.pad_token_id, padding_side=padding_side),
pad_to_max_len(reject_attention_mask, self.max_length, False, padding_side=padding_side),
pad_to_max_len(reject_loss_mask, self.max_length, False, padding_side=padding_side),
)
return dict(
chosen_input_ids=chosen_input_ids,
chosen_attention_mask=chosen_attention_mask,
chosen_loss_mask=chosen_loss_mask,
reject_input_ids=reject_input_ids,
reject_attention_mask=reject_attention_mask,
reject_loss_mask=reject_loss_mask,
)
[FP8] rebase main (#5963) * add SimPO * fix dataloader * remove debug code * add orpo * fix style * fix colossalai, transformers version * fix colossalai, transformers version * fix colossalai, transformers version * fix torch colossalai version * update transformers version * [shardformer] DeepseekMoE support (#5871) * [Feature] deepseek moe expert parallel implement * [misc] fix typo, remove redundant file (#5867) * [misc] fix typo * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] deepseek support & unit test * [misc] remove debug code & useless print * [misc] fix typos (#5872) * [Feature] remove modeling file, use auto config. (#5884) * [misc] fix typos * [Feature] deepseek support via auto model, remove modeling file * [misc] delete useless file * [misc] fix typos * [Deepseek] remove redundant code (#5888) * [misc] fix typos * [Feature] deepseek support via auto model, remove modeling file * [misc] delete useless file * [misc] fix typos * [misc] remove redundant code * [Feature/deepseek] resolve comment. (#5889) * [misc] fix typos * [Feature] deepseek support via auto model, remove modeling file * [misc] delete useless file * [misc] fix typos * [misc] remove redundant code * [misc] mv module replacement into if branch * [misc] add some warning message and modify some code in unit test * [misc] fix typos --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Hoxfix] Fix CUDA_DEVICE_MAX_CONNECTIONS for comm overlap Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [Feat] Diffusion Model(PixArtAlpha/StableDiffusion3) Support (#5838) * Diffusion Model Inference support * Stable Diffusion 3 Support * pixartalpha support * [HotFix] CI,import,requirements-test for #5838 (#5892) * [Hot Fix] CI,import,requirements-test --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] Enable PP + SP for llama (#5868) * fix cross-PP-stage position id length diff bug * fix typo * fix typo * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * use a one cross entropy func for all shardformer models --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [ShardFormer] Add Ulysses Sequence Parallelism support for Command-R, Qwen2 and ChatGLM (#5897) * add benchmark for sft, dpo, simpo, orpo. Add benchmarking result. Support lora with gradient checkpoint * fix style * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix eval * hotfix citation * [zero] support all-gather overlap (#5898) * [zero] support all-gather overlap * [zero] add overlap all-gather flag * [misc] fix typo * [zero] update api * fix orpo cross entropy loss * [Auto Parallel]: Speed up intra-op plan generation by 44% (#5446) * Remove unnecessary calls to deepcopy * Build DimSpec's difference dict only once This change considerably speeds up construction speed of DimSpec objects. The difference_dict is the same for each DimSpec object, so a single copy of it is enough. * Fix documentation of DimSpec's difference method * [ShardFormer] fix qwen2 sp (#5903) * [compatibility] support torch 2.2 (#5875) * Support Pytorch 2.2.2 * keep build_on_pr file and update .compatibility * fix object_to_tensor usage when torch>=2.3.0 (#5820) * [misc] support torch2.3 (#5893) * [misc] support torch2.3 * [devops] update compatibility ci * [devops] update compatibility ci * [devops] add debug * [devops] add debug * [devops] add debug * [devops] add debug * [devops] remove debug * [devops] remove debug * [release] update version (#5912) * [plugin] support all-gather overlap for hybrid parallel (#5919) * [plugin] fixed all-gather overlap support for hybrid parallel * add kto * fix style, add kto data sample * [Examples] Add lazy init to OPT and GPT examples (#5924) Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [ColossalChat] Hotfix for ColossalChat (#5910) * add ignore and tiny llama * fix path issue * run style * fix issue * update bash * add ignore and tiny llama * fix path issue * run style * fix issue * update bash * fix ddp issue * add Qwen 1.5 32B * refactor tokenization * [FIX BUG] UnboundLocalError: cannot access local variable 'default_conversation' where it is not associated with a value (#5931) * cannot access local variable 'default_conversation' where it is not associated with a value set default value for 'default_conversation' * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * fix test data * refactor evaluation * remove real data path * remove real data path * Add n_fused as an input from native_module (#5894) * [FIX BUG] convert env param to int in (#5934) * [Hotfix] Fix ZeRO typo #5936 Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [Feature] Add a switch to control whether the model checkpoint needs to be saved after each epoch ends (#5941) * Add a switch to control whether the model checkpoint needs to be saved after each epoch ends * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * fix style * fix style * fix style * [shardformer] hotfix attn mask (#5945) * [shardformer] hotfix attn mask (#5947) * [Feat] Distrifusion Acceleration Support for Diffusion Inference (#5895) * Distrifusion Support source * comp comm overlap optimization * sd3 benchmark * pixart distrifusion bug fix * sd3 bug fix and benchmark * generation bug fix * naming fix * add docstring, fix counter and shape error * add reference * readme and requirement * [zero] hotfix update master params (#5951) * [release] update version (#5952) * [Chat] Fix lora (#5946) * fix merging * remove filepath * fix style * Update README.md (#5958) * [hotfix] Remove unused plan section (#5957) * remove readme * fix readme * update * [test] add mixtral for sequence classification * [test] add mixtral transformer test * [moe] fix plugin * [test] mixtra pp shard test * [chore] handle non member group * [zero] solve hang * [test] pass mixtral shardformer test * [moe] implement transit between non moe tp and ep * [zero] solve hang * [misc] solve booster hang by rename the variable * solve hang when parallel mode = pp + dp * [moe] implement submesh initialization * [moe] add mixtral dp grad scaling when not all experts are activated * [chore] manually revert unintended commit * [chore] trivial fix * [chore] arg pass & remove drop token * [test] add mixtral modelling test * [moe] implement tp * [moe] test deepseek * [moe] clean legacy code * [Feature] MoE Ulysses Support (#5918) * moe sp support * moe sp bug solve * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [chore] minor fix * [moe] init moe plugin comm setting with sp * moe sp + ep bug fix * [moe] finalize test (no pp) * [moe] full test for deepseek and mixtral (pp + sp to fix) * [chore] minor fix after rebase * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [chore] solve moe ckpt test failure and some other arg pass failure * [moe] remove ops * [test] fix test: test_zero1_2 * [bug] fix: somehow logger hangs the program * [moe] deepseek moe sp support * [test] add check * [deepseek] replace attn (a workaround for bug in transformers) * [misc] skip redunant test * [misc] remove debug/print code * [moe] refactor mesh assignment * Revert "[moe] implement submesh initialization" This reverts commit 2f9bce6686d1415a83d5726dc5ff02222c742582. * [chore] change moe_pg_mesh to private * [misc] remove incompatible test config * [misc] fix ci failure: change default value to false in moe plugin * [misc] remove useless condition * [chore] docstring * [moe] remove force_overlap_comm flag and add warning instead * [doc] add MoeHybridParallelPlugin docstring * [moe] solve dp axis issue * [chore] remove redundant test case, print string & reduce test tokens * [feat] Dist Loader for Eval (#5950) * support auto distributed data loader * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * support auto distributed data loader * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix tp error * remove unused parameters * remove unused * update inference * update docs * update inference --------- Co-authored-by: Michelle <qianranma8@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [lora] lora support hybrid parallel plugin (#5956) * lora support hybrid plugin * fix * fix * fix * fix * fp8 operators for compressed communication cast_to_fp8, cast_from_fp8, all_reduce_fp8 * fix scaling algorithm in FP8 casting * support fp8 communication in pipeline parallelism * add fp8_communication flag in the script * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix typo * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * shardformer fp8 * fix rebase * remove all to all * fix shardformer fp8 communication training degradation * [fp8] support all-gather flat tensor (#5932) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * Update low_level_optim.py --------- Co-authored-by: YeAnbang <anbangy2@outlook.com> Co-authored-by: Haze188 <haze188@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com> Co-authored-by: Guangyao Zhang <xjtu521@qq.com> Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com> Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: zhurunhua <1281592874@qq.com> Co-authored-by: Insu Jang <insujang@umich.edu> Co-authored-by: Gao, Ruiyuan <905370712@qq.com> Co-authored-by: hxwang <wang1570@e.ntu.edu.sg> Co-authored-by: Michelle <qianranma8@gmail.com> Co-authored-by: Wang Binluo <32676639+wangbluo@users.noreply.github.com> Co-authored-by: HangXu <hangxu0304@gmail.com>
2024-08-06 08:29:37 +00:00
@dataclass
class DataCollatorForKTODataset(object):
"""
Collate instances for kto dataset.
Each input instance is a tokenized dictionary with fields
`prompt`(List[int]), `completion`(List[int]) and `label`(bool).
Each output instance is a tokenized dictionary with fields
`kl_input_ids`(List[int]), `kl_attention_mask`(List[int]) and `kl_loss_mask`(List[int]).
`input_ids`(List[int]), `attention_mask`(List[int]), `loss_mask`(List[int]) and `label`(bool).
"""
tokenizer: PreTrainedTokenizer
max_length: int = 4096
ignore_index: int = -100
def __call__(self, instances: Sequence[Dict[str, List[int]]]) -> Dict[str, torch.Tensor]:
"""
Args:
instances (`Sequence[Dict[str, List[int]]]`):
Mini-batch samples, each sample is stored in an individual dictionary contains the following fields:
`prompt`(List[int]), `completion`(List[int]) and `label`(bool, if the sample is desirable or not).
Returns:
(`Dict[str, torch.Tensor]`): Contains the following `torch.Tensor`:
`input_ids`: `torch.Tensor` of shape (bsz, max_len);
`attention_mask`: `torch.BoolTensor` of shape (bsz, max_len);
`labels`: `torch.Tensor` of shape (bsz, max_len), which contains `IGNORE_INDEX`.
"""
assert isinstance(self.tokenizer.pad_token_id, int) and self.tokenizer.pad_token_id >= 0, (
f"`{self.tokenizer.__class__.__name__}.pad_token_id` must be a valid non-negative integer index value, "
f"but now `{self.tokenizer.pad_token_id}`"
)
# prepare the preference data
prompt = [torch.LongTensor(instance["prompt"]) for instance in instances]
prompt_zeros = [torch.zeros_like(t) for t in prompt]
completion = [torch.LongTensor(instance["completion"]) for instance in instances]
completion_ones = [torch.ones_like(t) for t in completion]
label = [torch.tensor(instance["label"], dtype=torch.bool) for instance in instances]
input_ids = [torch.cat([prompt[i], completion[i]], dim=-1) for i in range(len(instances))]
loss_mask = [torch.cat([prompt_zeros[i], completion_ones[i]], dim=-1) for i in range(len(instances))]
# right padding
input_ids = torch.nn.utils.rnn.pad_sequence(
sequences=input_ids,
batch_first=True,
padding_value=self.tokenizer.pad_token_id,
) # (bsz, max_len)
loss_mask = torch.nn.utils.rnn.pad_sequence(
sequences=loss_mask, batch_first=True, padding_value=0
) # (bsz, max_len)
to_pad = self.max_length - input_ids.size(1)
input_ids = F.pad(input_ids, (0, to_pad), value=self.tokenizer.pad_token_id)
loss_mask = F.pad(loss_mask, (0, to_pad), value=0)
attention_mask = input_ids.ne(self.tokenizer.pad_token_id) # `torch.BoolTensor`, (bsz, max_len)
# prepare kt data
kl_completion = completion[::-1] # y'
kl_completion_ones = [torch.ones_like(t) for t in kl_completion]
kl_input_ids = [torch.cat([prompt[i], kl_completion[i]], dim=-1) for i in range(len(instances))]
kl_loss_mask = [torch.cat([prompt_zeros[i], kl_completion_ones[i]], dim=-1) for i in range(len(instances))]
# right padding
kl_input_ids = torch.nn.utils.rnn.pad_sequence(
sequences=kl_input_ids,
batch_first=True,
padding_value=self.tokenizer.pad_token_id,
) # (bsz, max_len)
kl_loss_mask = torch.nn.utils.rnn.pad_sequence(
sequences=kl_loss_mask, batch_first=True, padding_value=0
) # (bsz, max_len)
to_pad = self.max_length - kl_input_ids.size(1)
kl_input_ids = F.pad(kl_input_ids, (0, to_pad), value=self.tokenizer.pad_token_id)
kl_loss_mask = F.pad(kl_loss_mask, (0, to_pad), value=0)
kl_attention_mask = kl_input_ids.ne(self.tokenizer.pad_token_id) # `torch.BoolTensor`, (bsz, max_len)
data_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"loss_mask": loss_mask,
"label": torch.stack(label),
"kl_input_ids": kl_input_ids,
"kl_attention_mask": kl_attention_mask,
"kl_loss_mask": kl_loss_mask,
}
return data_dict
[ColossalChat] Update RLHF V2 (#5286) * Add dpo. Fix sft, ppo, lora. Refactor all * fix and tested ppo * 2 nd round refactor * add ci tests * fix ci * fix ci * fix readme, style * fix readme style * fix style, fix benchmark * reproduce benchmark result, remove useless files * rename to ColossalChat * use new image * fix ci workflow * fix ci * use local model/tokenizer for ci tests * fix ci * fix ci * fix ci * fix ci timeout * fix rm progress bar. fix ci timeout * fix ci * fix ci typo * remove 3d plugin from ci temporary * test environment * cannot save optimizer * support chat template * fix readme * fix path * test ci locally * restore build_or_pr * fix ci data path * fix benchmark * fix ci, move ci tests to 3080, disable fast tokenizer * move ci to 85 * support flash attention 2 * add all-in-one data preparation script. Fix colossal-llama2-chat chat template * add hardware requirements * move ci test data * fix save_model, add unwrap * fix missing bos * fix missing bos; support grad accumulation with gemini * fix ci * fix ci * fix ci * fix llama2 chat template config * debug sft * debug sft * fix colossalai version requirement * fix ci * add sanity check to prevent NaN loss * fix requirements * add dummy data generation script * add dummy data generation script * add dummy data generation script * add dummy data generation script * update readme * update readme * update readme and ignore * fix logger bug * support parallel_output * modify data preparation logic * fix tokenization * update lr * fix inference * run pre-commit --------- Co-authored-by: Tong Li <tong.li352711588@gmail.com>
2024-03-29 06:12:29 +00:00
class StatefulDistributedSampler(DistributedSampler):
def __init__(
self,
dataset: Dataset,
[ColossalChat] Update RLHF V2 (#5286) * Add dpo. Fix sft, ppo, lora. Refactor all * fix and tested ppo * 2 nd round refactor * add ci tests * fix ci * fix ci * fix readme, style * fix readme style * fix style, fix benchmark * reproduce benchmark result, remove useless files * rename to ColossalChat * use new image * fix ci workflow * fix ci * use local model/tokenizer for ci tests * fix ci * fix ci * fix ci * fix ci timeout * fix rm progress bar. fix ci timeout * fix ci * fix ci typo * remove 3d plugin from ci temporary * test environment * cannot save optimizer * support chat template * fix readme * fix path * test ci locally * restore build_or_pr * fix ci data path * fix benchmark * fix ci, move ci tests to 3080, disable fast tokenizer * move ci to 85 * support flash attention 2 * add all-in-one data preparation script. Fix colossal-llama2-chat chat template * add hardware requirements * move ci test data * fix save_model, add unwrap * fix missing bos * fix missing bos; support grad accumulation with gemini * fix ci * fix ci * fix ci * fix llama2 chat template config * debug sft * debug sft * fix colossalai version requirement * fix ci * add sanity check to prevent NaN loss * fix requirements * add dummy data generation script * add dummy data generation script * add dummy data generation script * add dummy data generation script * update readme * update readme * update readme and ignore * fix logger bug * support parallel_output * modify data preparation logic * fix tokenization * update lr * fix inference * run pre-commit --------- Co-authored-by: Tong Li <tong.li352711588@gmail.com>
2024-03-29 06:12:29 +00:00
num_replicas: Optional[int] = None,
rank: Optional[int] = None,
shuffle: bool = True,
seed: int = 0,
drop_last: bool = False,
) -> None:
super().__init__(dataset, num_replicas, rank, shuffle, seed, drop_last)
self.start_index: int = 0
[ColossalChat] Update RLHF V2 (#5286) * Add dpo. Fix sft, ppo, lora. Refactor all * fix and tested ppo * 2 nd round refactor * add ci tests * fix ci * fix ci * fix readme, style * fix readme style * fix style, fix benchmark * reproduce benchmark result, remove useless files * rename to ColossalChat * use new image * fix ci workflow * fix ci * use local model/tokenizer for ci tests * fix ci * fix ci * fix ci * fix ci timeout * fix rm progress bar. fix ci timeout * fix ci * fix ci typo * remove 3d plugin from ci temporary * test environment * cannot save optimizer * support chat template * fix readme * fix path * test ci locally * restore build_or_pr * fix ci data path * fix benchmark * fix ci, move ci tests to 3080, disable fast tokenizer * move ci to 85 * support flash attention 2 * add all-in-one data preparation script. Fix colossal-llama2-chat chat template * add hardware requirements * move ci test data * fix save_model, add unwrap * fix missing bos * fix missing bos; support grad accumulation with gemini * fix ci * fix ci * fix ci * fix llama2 chat template config * debug sft * debug sft * fix colossalai version requirement * fix ci * add sanity check to prevent NaN loss * fix requirements * add dummy data generation script * add dummy data generation script * add dummy data generation script * add dummy data generation script * update readme * update readme * update readme and ignore * fix logger bug * support parallel_output * modify data preparation logic * fix tokenization * update lr * fix inference * run pre-commit --------- Co-authored-by: Tong Li <tong.li352711588@gmail.com>
2024-03-29 06:12:29 +00:00
def __iter__(self) -> Iterator:
iterator = super().__iter__()
indices = list(iterator)
indices = indices[self.start_index :]
return iter(indices)
[ColossalChat] Update RLHF V2 (#5286) * Add dpo. Fix sft, ppo, lora. Refactor all * fix and tested ppo * 2 nd round refactor * add ci tests * fix ci * fix ci * fix readme, style * fix readme style * fix style, fix benchmark * reproduce benchmark result, remove useless files * rename to ColossalChat * use new image * fix ci workflow * fix ci * use local model/tokenizer for ci tests * fix ci * fix ci * fix ci * fix ci timeout * fix rm progress bar. fix ci timeout * fix ci * fix ci typo * remove 3d plugin from ci temporary * test environment * cannot save optimizer * support chat template * fix readme * fix path * test ci locally * restore build_or_pr * fix ci data path * fix benchmark * fix ci, move ci tests to 3080, disable fast tokenizer * move ci to 85 * support flash attention 2 * add all-in-one data preparation script. Fix colossal-llama2-chat chat template * add hardware requirements * move ci test data * fix save_model, add unwrap * fix missing bos * fix missing bos; support grad accumulation with gemini * fix ci * fix ci * fix ci * fix llama2 chat template config * debug sft * debug sft * fix colossalai version requirement * fix ci * add sanity check to prevent NaN loss * fix requirements * add dummy data generation script * add dummy data generation script * add dummy data generation script * add dummy data generation script * update readme * update readme * update readme and ignore * fix logger bug * support parallel_output * modify data preparation logic * fix tokenization * update lr * fix inference * run pre-commit --------- Co-authored-by: Tong Li <tong.li352711588@gmail.com>
2024-03-29 06:12:29 +00:00
def __len__(self) -> int:
return self.num_samples - self.start_index
def set_start_index(self, start_index: int) -> None:
self.start_index = start_index