[ColossalChat] Update RLHF V2 (#5286)

* Add dpo. Fix sft, ppo, lora. Refactor all

* fix and tested ppo

* 2 nd round refactor

* add ci tests

* fix ci

* fix ci

* fix readme, style

* fix readme style

* fix style, fix benchmark

* reproduce benchmark result, remove useless files

* rename to ColossalChat

* use new image

* fix ci workflow

* fix ci

* use local model/tokenizer for ci tests

* fix ci

* fix ci

* fix ci

* fix ci timeout

* fix rm progress bar. fix ci timeout

* fix ci

* fix ci typo

* remove 3d plugin from ci temporary

* test environment

* cannot save optimizer

* support chat template

* fix readme

* fix path

* test ci locally

* restore build_or_pr

* fix ci data path

* fix benchmark

* fix ci, move ci tests to 3080, disable fast tokenizer

* move ci to 85

* support flash attention 2

* add all-in-one data preparation script. Fix colossal-llama2-chat chat template

* add hardware requirements

* move ci test data

* fix save_model, add unwrap

* fix missing bos

* fix missing bos; support grad accumulation with gemini

* fix ci

* fix ci

* fix ci

* fix llama2 chat template config

* debug sft

* debug sft

* fix colossalai version requirement

* fix ci

* add sanity check to prevent NaN loss

* fix requirements

* add dummy data generation script

* add dummy data generation script

* add dummy data generation script

* add dummy data generation script

* update readme

* update readme

* update readme and ignore

* fix logger bug

* support parallel_output

* modify data preparation logic

* fix tokenization

* update lr

* fix inference

* run pre-commit

---------

Co-authored-by: Tong Li <tong.li352711588@gmail.com>
pull/5545/head
YeAnbang 2024-03-29 14:12:29 +08:00 committed by GitHub
parent 36c4bb2893
commit df5e9c53cf
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
200 changed files with 8848 additions and 8049 deletions

View File

@ -19,8 +19,8 @@ jobs:
runs-on: [self-hosted, gpu]
container:
image: hpcaitech/pytorch-cuda:2.1.0-12.1.0
options: --gpus all --rm -v /data/scratch/github_actions/chat:/data/scratch/github_actions/chat --shm-size=10.24gb
timeout-minutes: 30
options: --gpus all --rm -v /data/scratch/examples-data:/data/scratch/examples-data --shm-size=10.24gb
timeout-minutes: 60
defaults:
run:
shell: bash
@ -28,26 +28,35 @@ jobs:
- name: Checkout ColossalAI
uses: actions/checkout@v2
- name: Install Colossal-AI
run: |
BUILD_EXT=1 pip install -v -e .
- name: Install ChatGPT
run: |
cd applications/Chat
cd applications/ColossalChat
pip install -v .
export BUILD_EXT=1
pip install -r examples/requirements.txt
- name: Install Transformers
run: |
pip install transformers==4.30.2
pip install transformers==4.34.1
- name: Execute Examples
run: |
cd applications/Chat
cd applications/ColossalChat
rm -rf ~/.cache/colossalai
./tests/test_inference.sh
./tests/test_benchmarks.sh
mkdir models
mkdir sft_data
mkdir prompt_data
mkdir preference_data
./tests/test_data_preparation.sh
./tests/test_train.sh
env:
NCCL_SHM_DISABLE: 1
MAX_JOBS: 8
SFT_DATASET: /data/scratch/github_actions/chat/data.json
PROMPT_DATASET: /data/scratch/github_actions/chat/prompts_en.jsonl
PRETRAIN_DATASET: /data/scratch/github_actions/chat/alpaca_data.json
PRETRAINED_MODEL_PATH: ./models
SFT_DATASET: ./sft_data
PROMPT_DATASET: ./prompt_data
PREFERENCE_DATASET: ./preference_data

View File

@ -21,7 +21,7 @@ jobs:
runs-on: [self-hosted, gpu]
container:
image: hpcaitech/pytorch-cuda:2.1.0-12.1.0
options: --gpus all --rm -v /data/scratch/chatgpt:/data/scratch/chatgpt
options: --gpus all --rm -v /data/scratch/examples-data:/data/scratch/examples-data
timeout-minutes: 30
defaults:
run:
@ -32,15 +32,17 @@ jobs:
- name: Install ChatGPT
run: |
cd applications/Chat
cd applications/ColossalChat
pip install -v .
pip install -r requirements-test.txt
pip install pytest
- name: Execute Unit Testing
run: |
cd applications/Chat
cd applications/ColossalChat
rm -rf ~/.cache/colossalai
pytest tests/
cd ./tests
./test_templating.sh
env:
NCCL_SHM_DISABLE: 1
MAX_JOBS: 8

4
.gitignore vendored
View File

@ -159,3 +159,7 @@ coverage.xml
# ignore testmon and coverage files
.coverage
.testmondata*
# log, test files - ColossalChat
applications/ColossalChat/logs
applications/ColossalChat/tests/logs

View File

@ -1,38 +0,0 @@
# Benchmarks
## Benchmark OPT with LoRA on dummy prompt data
We provide various OPT models (string in parentheses is the corresponding model name used in this script):
- OPT-125M (125m)
- OPT-350M (350m)
- OPT-700M (700m)
- OPT-1.3B (1.3b)
- OPT-2.7B (2.7b)
- OPT-3.5B (3.5b)
- OPT-5.5B (5.5b)
- OPT-6.7B (6.7b)
- OPT-10B (10b)
- OPT-13B (13b)
We also provide various training strategies:
- ddp: torch DDP
- colossalai_gemini: ColossalAI GeminiDDP with `placement_policy="cuda"`, like zero3
- colossalai_gemini_cpu: ColossalAI GeminiDDP with `placement_policy="cpu"`, like zero3-offload
- colossalai_zero2: ColossalAI zero2
- colossalai_zero2_cpu: ColossalAI zero2-offload
- colossalai_zero1: ColossalAI zero1
- colossalai_zero1_cpu: ColossalAI zero1-offload
We only support `torchrun` to launch now. E.g.
```bash
# run OPT-125M with no lora (lora_rank=0) on single-node single-GPU with min batch size
torchrun --standalone --nproc_per_node 1 benchmark_opt_lora_dummy.py \
--model 125m --critic_model 125m --strategy ddp \
--experience_batch_size 1 --train_batch_size 1 --lora_rank 0
# run Actor (OPT-1.3B) and Critic (OPT-350M) with lora_rank=4 on single-node 4-GPU
torchrun --standalone --nproc_per_node 4 benchmark_opt_lora_dummy.py \
--model 1.3b --critic_model 350m --strategy colossalai_zero2 --lora_rank 4
```

View File

@ -1,208 +0,0 @@
import argparse
from copy import deepcopy
import torch
import torch.distributed as dist
import torch.nn as nn
from coati.models.base import RewardModel
from coati.models.opt import OPTActor, OPTCritic
from coati.trainer import PPOTrainer
from coati.trainer.callbacks import PerformanceEvaluator
from coati.trainer.strategies import DDPStrategy, GeminiStrategy, LowLevelZeroStrategy, Strategy
from torch.optim import Adam
from torch.utils.data import DataLoader
from transformers import AutoTokenizer
from transformers.models.opt.configuration_opt import OPTConfig
from colossalai.nn.optimizer import HybridAdam
def get_model_numel(model: nn.Module, strategy: Strategy) -> int:
numel = sum(p.numel() for p in model.parameters())
if isinstance(strategy, GeminiStrategy) and strategy.shard_init:
numel *= dist.get_world_size()
return numel
def preprocess_batch(samples) -> dict:
input_ids = torch.stack(samples)
attention_mask = torch.ones_like(input_ids, dtype=torch.long)
return {"input_ids": input_ids, "attention_mask": attention_mask}
def print_rank_0(*args, **kwargs) -> None:
if dist.get_rank() == 0:
print(*args, **kwargs)
def print_model_numel(model_dict: dict) -> None:
B = 1024**3
M = 1024**2
K = 1024
outputs = ""
for name, numel in model_dict.items():
outputs += f"{name}: "
if numel >= B:
outputs += f"{numel / B:.2f} B\n"
elif numel >= M:
outputs += f"{numel / M:.2f} M\n"
elif numel >= K:
outputs += f"{numel / K:.2f} K\n"
else:
outputs += f"{numel}\n"
print_rank_0(outputs)
def get_gpt_config(model_name: str) -> OPTConfig:
model_map = {
"125m": OPTConfig.from_pretrained("facebook/opt-125m"),
"350m": OPTConfig(hidden_size=1024, ffn_dim=4096, num_hidden_layers=24, num_attention_heads=16),
"700m": OPTConfig(hidden_size=1280, ffn_dim=5120, num_hidden_layers=36, num_attention_heads=20),
"1.3b": OPTConfig.from_pretrained("facebook/opt-1.3b"),
"2.7b": OPTConfig.from_pretrained("facebook/opt-2.7b"),
"3.5b": OPTConfig(hidden_size=3072, ffn_dim=12288, num_hidden_layers=32, num_attention_heads=32),
"5.5b": OPTConfig(hidden_size=3840, ffn_dim=15360, num_hidden_layers=32, num_attention_heads=32),
"6.7b": OPTConfig.from_pretrained("facebook/opt-6.7b"),
"10b": OPTConfig(hidden_size=5120, ffn_dim=20480, num_hidden_layers=32, num_attention_heads=32),
"13b": OPTConfig.from_pretrained("facebook/opt-13b"),
}
try:
return model_map[model_name]
except KeyError:
raise ValueError(f'Unknown model "{model_name}"')
def main(args):
if args.strategy == "ddp":
strategy = DDPStrategy()
elif args.strategy == "colossalai_gemini":
strategy = GeminiStrategy(placement_policy="static",initial_scale=2**5)
elif args.strategy == "colossalai_gemini_cpu":
strategy = GeminiStrategy(placement_policy="static", offload_optim_frac=1.0, offload_param_frac=1.0, initial_scale=2**5)
elif args.strategy == "colossalai_zero2":
strategy = LowLevelZeroStrategy(stage=2, placement_policy="cuda")
elif args.strategy == "colossalai_zero2_cpu":
strategy = LowLevelZeroStrategy(stage=2, placement_policy="cpu")
elif args.strategy == "colossalai_zero1":
strategy = LowLevelZeroStrategy(stage=1, placement_policy="cuda")
elif args.strategy == "colossalai_zero1_cpu":
strategy = LowLevelZeroStrategy(stage=1, placement_policy="cpu")
else:
raise ValueError(f'Unsupported strategy "{args.strategy}"')
torch.cuda.set_per_process_memory_fraction(args.cuda_mem_frac)
model_config = get_gpt_config(args.model)
critic_config = get_gpt_config(args.critic_model)
with strategy.model_init_context():
actor = OPTActor(config=model_config, lora_rank=args.lora_rank).cuda()
critic = OPTCritic(config=critic_config, lora_rank=args.lora_rank).cuda()
initial_model = deepcopy(actor).cuda().half()
reward_model = RewardModel(deepcopy(critic.model), deepcopy(critic.value_head)).cuda().half()
if args.use_kernels:
from coati.kernels import convert_to_xformer_model
actor, critic, initial_model, reward_model = map(
convert_to_xformer_model, (actor, critic, initial_model, reward_model)
)
actor_numel = get_model_numel(actor, strategy)
critic_numel = get_model_numel(critic, strategy)
initial_model_numel = get_model_numel(initial_model, strategy)
reward_model_numel = get_model_numel(reward_model, strategy)
print_model_numel(
{
"Actor": actor_numel,
"Critic": critic_numel,
"Initial model": initial_model_numel,
"Reward model": reward_model_numel,
}
)
performance_evaluator = PerformanceEvaluator(
actor_numel,
critic_numel,
initial_model_numel,
reward_model_numel,
enable_grad_checkpoint=False,
ignore_episodes=1,
)
if args.strategy.startswith("colossalai"):
actor_optim = HybridAdam(actor.parameters(), lr=5e-6)
critic_optim = HybridAdam(critic.parameters(), lr=5e-6)
else:
actor_optim = Adam(actor.parameters(), lr=5e-6)
critic_optim = Adam(critic.parameters(), lr=5e-6)
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"
(actor, actor_optim), (critic, critic_optim) = strategy.prepare((actor, actor_optim), (critic, critic_optim))
random_prompts = torch.randint(tokenizer.vocab_size, (1000, 256), device=torch.cuda.current_device())
dataloader = DataLoader(
random_prompts, batch_size=args.experience_batch_size, shuffle=True, collate_fn=preprocess_batch
)
trainer = PPOTrainer(
strategy,
actor,
critic,
reward_model,
initial_model,
actor_optim,
critic_optim,
tokenizer=tokenizer,
ptx_coef=0,
train_batch_size=args.train_batch_size,
offload_inference_models=args.offload_inference_models,
max_length=512,
do_sample=True,
temperature=1.0,
top_k=50,
use_cache=True,
callbacks=[performance_evaluator],
)
trainer.fit(
prompt_dataloader=dataloader,
pretrain_dataloader=None,
num_episodes=args.num_episodes,
num_update_steps=args.num_update_steps,
num_collect_steps=args.num_collect_steps,
)
print_rank_0(f"Peak CUDA mem: {torch.cuda.max_memory_allocated()/1024**3:.2f} GB")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", default="125m")
parser.add_argument("--critic_model", default="125m")
parser.add_argument(
"--strategy",
choices=[
"ddp",
"colossalai_gemini",
"colossalai_gemini_cpu",
"colossalai_zero2",
"colossalai_zero2_cpu",
"colossalai_zero1",
"colossalai_zero1_cpu",
],
default="ddp",
)
parser.add_argument("--num_episodes", type=int, default=3)
parser.add_argument("--num_collect_steps", type=int, default=8)
parser.add_argument("--num_update_steps", type=int, default=1)
parser.add_argument("--train_batch_size", type=int, default=8)
parser.add_argument("--experience_batch_size", type=int, default=8)
parser.add_argument("--lora_rank", type=int, default=0)
parser.add_argument("--cuda_mem_frac", type=float, default=1.0)
parser.add_argument("--offload_inference_models", action="store_true", default=False)
parser.add_argument("--use_kernels", action="store_true", default=False)
args = parser.parse_args()
main(args)

View File

@ -1,13 +0,0 @@
from .prompt_dataset import PromptDataset
from .reward_dataset import HhRlhfDataset, RmStaticDataset
from .sft_dataset import SFTDataset, SupervisedDataset
from .utils import is_rank_0
__all__ = [
"RmStaticDataset",
"HhRlhfDataset",
"SFTDataset",
"SupervisedDataset",
"PromptDataset",
"is_rank_0",
]

View File

@ -1,89 +0,0 @@
# Copyright 2023 lm-sys@FastChat
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import dataclasses
from enum import Enum, auto
from typing import List
class SeparatorStyle(Enum):
ADD_EOS_TOKEN = auto()
@dataclasses.dataclass
class Conversation:
system: str
roles: List[str]
messages: List[List[str]]
offset: int
sep_style: SeparatorStyle = SeparatorStyle.ADD_EOS_TOKEN
sep: str = "</s>"
skip_next: bool = False
def get_prompt(self):
if self.sep_style == SeparatorStyle.ADD_EOS_TOKEN:
ret = self.system
for role, message in self.messages:
if message:
ret += role + ": " + message + self.sep
else:
ret += role + ": "
return ret
else:
raise ValueError(f"Invalid style: {self.sep_style}")
def append_message(self, role, message):
self.messages.append([role, message])
def to_gradio_chatbot(self):
ret = []
for i, (role, msg) in enumerate(self.messages[self.offset :]):
if i % 2 == 0:
ret.append([msg, None])
else:
ret[-1][-1] = msg
return ret
def copy(self):
return Conversation(
system=self.system,
roles=self.roles,
messages=[[x, y] for x, y in self.messages],
offset=self.offset,
sep_style=self.sep_style,
sep=self.sep,
)
def dict(self):
return {
"system": self.system,
"roles": self.roles,
"messages": self.messages,
"offset": self.offset,
"sep": self.sep,
}
conv = Conversation(
system="A chat between a curious human and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
roles=("Human", "Assistant"),
messages=(),
offset=0,
sep_style=SeparatorStyle.ADD_EOS_TOKEN,
sep="</s>",
)
default_conversation = conv

View File

@ -1,45 +0,0 @@
from collections import defaultdict
from typing import Dict
import torch
import transformers
from torch.utils.data import Dataset
from colossalai.logging import get_dist_logger
from .utils import jload
class PromptDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(
self,
data_path: str,
tokenizer: transformers.PreTrainedTokenizer,
max_datasets_size: int = None,
max_length: int = 96,
):
super(PromptDataset, self).__init__()
self.keyed_prompt = defaultdict(list)
self.logger = get_dist_logger()
self.logger.info("Loading data...")
list_data_dict = jload(data_path)
self.logger.info(f"Loaded {len(list_data_dict)} examples.")
if max_datasets_size is not None:
self.logger.info(f"Limiting dataset to {max_datasets_size} examples.")
list_data_dict = list_data_dict[:max_datasets_size]
instructions = [data_dict["instruction"] for data_dict in list_data_dict]
tokens = tokenizer(
instructions, return_tensors="pt", max_length=max_length, padding="max_length", truncation=True
)
for k, tensor in tokens.items():
self.keyed_prompt[k] = tensor.to(torch.cuda.current_device()).unbind()
def __len__(self):
return len(self.keyed_prompt["input_ids"])
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
return {k: v[i] for k, v in self.keyed_prompt.items()}

View File

@ -1,88 +0,0 @@
from typing import Callable
from torch.utils.data import Dataset
from tqdm import tqdm
from .utils import is_rank_0
# Dahoas/rm-static
class RmStaticDataset(Dataset):
"""
Dataset for reward model
Args:
dataset: dataset for reward model
tokenizer: tokenizer for reward model
max_length: max length of input
special_token: special token at the end of sentence
"""
def __init__(self, dataset, tokenizer: Callable, max_length: int, special_token=None) -> None:
super().__init__()
self.end_token = tokenizer.eos_token if special_token is None else special_token
chosen = [data["prompt"] + data["chosen"] + self.end_token for data in tqdm(dataset, disable=not is_rank_0())]
chosen_token = tokenizer(
chosen, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt"
)
self.chosen = {"input_ids": chosen_token["input_ids"], "attention_mask": chosen_token["attention_mask"]}
reject = [data["prompt"] + data["rejected"] + self.end_token for data in tqdm(dataset, disable=not is_rank_0())]
reject_token = tokenizer(
reject, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt"
)
self.reject = {"input_ids": reject_token["input_ids"], "attention_mask": reject_token["attention_mask"]}
def __len__(self):
length = self.chosen["input_ids"].shape[0]
return length
def __getitem__(self, idx):
return (
self.chosen["input_ids"][idx],
self.chosen["attention_mask"][idx],
self.reject["input_ids"][idx],
self.reject["attention_mask"][idx],
)
# Anthropic/hh-rlhf
class HhRlhfDataset(Dataset):
"""
Dataset for reward model
Args:
dataset: dataset for reward model
tokenizer: tokenizer for reward model
max_length: max length of input
special_token: special token at the end of sentence
"""
def __init__(self, dataset, tokenizer: Callable, max_length: int, special_token=None) -> None:
super().__init__()
self.end_token = tokenizer.eos_token if special_token is None else special_token
chosen = [data["chosen"] + self.end_token for data in tqdm(dataset, disable=not is_rank_0())]
chosen_token = tokenizer(
chosen, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt"
)
self.chosen = {"input_ids": chosen_token["input_ids"], "attention_mask": chosen_token["attention_mask"]}
reject = [data["rejected"] + self.end_token for data in tqdm(dataset, disable=not is_rank_0())]
reject_token = tokenizer(
reject, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt"
)
self.reject = {"input_ids": reject_token["input_ids"], "attention_mask": reject_token["attention_mask"]}
def __len__(self):
length = self.chosen["input_ids"].shape[0]
return length
def __getitem__(self, idx):
return (
self.chosen["input_ids"][idx],
self.chosen["attention_mask"][idx],
self.reject["input_ids"][idx],
self.reject["attention_mask"][idx],
)

View File

@ -1,200 +0,0 @@
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
from typing import Dict, Optional, Sequence, Tuple
import torch
from coati.models.chatglm.chatglm_tokenizer import ChatGLMTokenizer
from torch.utils.data import Dataset
from tqdm import tqdm
from transformers import PreTrainedTokenizer
from colossalai.logging import get_dist_logger
from .utils import is_rank_0, jload
logger = get_dist_logger()
IGNORE_INDEX = -100
PROMPT_DICT = {
"prompt_input": (
"Below is an instruction that describes a task, paired with an input that provides further context. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:"
),
"prompt_no_input": (
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Response:"
),
}
def _preprocess(
sources: Sequence[str],
targets: Sequence[str],
tokenizer: PreTrainedTokenizer,
max_length: int,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Preprocess the data by tokenizing."""
sequences = [s + t + tokenizer.eos_token for s, t in zip(sources, targets)]
sequences_token = tokenizer(
sequences, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt", add_special_tokens=False
)
sources_token = tokenizer(
sources, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt", add_special_tokens=False
)
assert sequences_token["attention_mask"].dim() == 2, "seq2seq model should be preprocessed differently"
labels = copy.deepcopy(sequences_token["input_ids"])
for i in range(labels.shape[0]):
source_len = sources_token["attention_mask"][i].sum().item()
pad_len = max_length - sequences_token["attention_mask"][i].sum().item()
if tokenizer.padding_side == "right":
# |prompt|completion|eos|pad|
labels[i][:source_len] = IGNORE_INDEX
if pad_len>0:
labels[i][-pad_len:] = IGNORE_INDEX
elif tokenizer.padding_side == "left":
# |pad|prompt|completion|eos|
labels[i][: pad_len + source_len] = IGNORE_INDEX
else:
raise RuntimeError()
return sequences_token["input_ids"], labels, sequences_token["attention_mask"]
def _preprocess_chatglm(
sources: Sequence[str],
targets: Sequence[str],
tokenizer: PreTrainedTokenizer,
max_length: int,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Preprocess the data by tokenizing.
None for attention mask, ChatGLM will calculate attention mask according to input ids
"""
labels = []
input_ids = []
for source, target in zip(sources, targets):
source_id = tokenizer.encode(text=source, add_special_tokens=False)
target_id = tokenizer.encode(text=target, add_special_tokens=False)
input_id = tokenizer.build_inputs_with_special_tokens(source_id, target_id)
# truncate
sp_token_list = [tokenizer.gmask_token_id, tokenizer.bos_token_id]
truncate_length = max(0, len(input_id) - max_length)
input_id = input_id[truncate_length:]
if truncate_length == len(source_id) + 1:
input_id = sp_token_list + input_id[1:]
elif truncate_length > len(source_id) + 1:
input_id = sp_token_list + input_id[2:]
context_length = input_id.index(tokenizer.bos_token_id)
mask_position = context_length - 1
label = [IGNORE_INDEX] * context_length + input_id[mask_position + 1 :]
pad_len = max_length - len(input_id)
input_id = input_id + [tokenizer.pad_token_id] * pad_len
input_ids.append(input_id)
labels.append(label + [IGNORE_INDEX] * pad_len)
return torch.tensor(input_ids), torch.tensor(labels), None
class SFTDataset(Dataset):
"""
Dataset for sft model
Args:
dataset: dataset for supervised model
tokenizer: tokenizer for supervised model
max_length: max length of input
"""
def __init__(self, dataset: Dict, tokenizer: PreTrainedTokenizer, max_length: int = 512) -> None:
super().__init__()
self.input_ids = []
sources = [data["prompt"] for data in dataset]
targets = [data["completion"] + tokenizer.eos_token for data in tqdm(dataset, disable=not is_rank_0())]
logger.info("Tokenizing inputs... This may take some time...")
if isinstance(tokenizer, ChatGLMTokenizer):
self.input_ids, self.labels, self.attention_mask = _preprocess_chatglm(
sources, targets, tokenizer, max_length
)
else:
self.input_ids, self.labels, self.attention_mask = _preprocess(sources, targets, tokenizer, max_length)
logger.info("Loaded dataset.")
def __len__(self):
length = self.input_ids.shape[0]
return length
def __getitem__(self, idx):
if self.attention_mask is not None:
return dict(input_ids=self.input_ids[idx], labels=self.labels[idx], attention_mask=self.attention_mask[idx])
else:
return dict(input_ids=self.input_ids[idx], labels=self.labels[idx])
class SupervisedDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(
self,
data_path: str,
tokenizer: PreTrainedTokenizer,
max_datasets_size: Optional[int] = None,
max_length: int = 512,
):
super().__init__()
logger.info("Loading data...")
list_data_dict = jload(data_path)
logger.info(f"Loaded {len(list_data_dict)} examples.")
if max_datasets_size is not None:
logger.info(f"Limiting dataset to {max_datasets_size} examples.")
list_data_dict = list_data_dict[:max_datasets_size]
logger.info("Formatting inputs...")
prompt_input, prompt_no_input = PROMPT_DICT["prompt_input"], PROMPT_DICT["prompt_no_input"]
sources = [
prompt_input.format_map(example) if "input" in example else prompt_no_input.format_map(example)
for example in list_data_dict
]
targets = [example["output"] + tokenizer.eos_token for example in list_data_dict]
logger.info("Tokenizing inputs... This may take some time...")
if isinstance(tokenizer, ChatGLMTokenizer):
self.input_ids, self.labels, self.attention_mask = _preprocess_chatglm(
sources, targets, tokenizer, max_length
)
else:
self.input_ids, self.labels, self.attention_mask = _preprocess(sources, targets, tokenizer, max_length)
logger.info("Loaded dataset.")
def __len__(self):
length = self.input_ids.shape[0]
return length
def __getitem__(self, idx):
if self.attention_mask is not None:
return dict(input_ids=self.input_ids[idx], labels=self.labels[idx], attention_mask=self.attention_mask[idx])
else:
return dict(input_ids=self.input_ids[idx], labels=self.labels[idx])

View File

@ -1,22 +0,0 @@
import io
import json
import torch.distributed as dist
def is_rank_0() -> bool:
return not dist.is_initialized() or dist.get_rank() == 0
def _make_r_io_base(f, mode: str):
if not isinstance(f, io.IOBase):
f = open(f, mode=mode)
return f
def jload(f, mode="r"):
"""Load a .json file into a dictionary."""
f = _make_r_io_base(f, mode)
jdict = json.load(f)
f.close()
return jdict

View File

@ -1,71 +0,0 @@
import torch
import torch.nn.functional as F
from coati.models.base import Actor, Critic, RewardModel
from coati.models.generation import generate
from coati.models.utils import calc_action_log_probs, compute_reward
from transformers import PreTrainedTokenizer
from .base import Experience, ExperienceMaker
class NaiveExperienceMaker(ExperienceMaker):
"""
Naive experience maker.
"""
def __init__(
self,
actor: Actor,
critic: Critic,
reward_model: RewardModel,
initial_model: Actor,
tokenizer: PreTrainedTokenizer,
kl_coef: float = 0.1,
) -> None:
super().__init__(actor, critic, reward_model, initial_model)
self.tokenizer = tokenizer
self.kl_coef = kl_coef
@torch.no_grad()
def make_experience(self, input_ids: torch.Tensor, **generate_kwargs) -> Experience:
self.actor.eval()
self.critic.eval()
self.initial_model.eval()
self.reward_model.eval()
# generate sequences
sequences = generate(self.actor, input_ids, self.tokenizer, **generate_kwargs)
# calculate auxiliary tensors
attention_mask = None
pad_token_id = self.tokenizer.pad_token_id
if pad_token_id is not None:
attention_mask = sequences.not_equal(pad_token_id).to(dtype=torch.long, device=sequences.device)
input_len = input_ids.size(1)
eos_token_id = self.tokenizer.eos_token_id
if eos_token_id is None:
action_mask = torch.ones_like(sequences, dtype=torch.bool)
else:
# left padding may be applied, only mask action
action_mask = (sequences[:, input_len:] == eos_token_id).cumsum(dim=-1) == 0
action_mask = F.pad(action_mask, (1 + input_len, -1), value=True) # include eos token and input
action_mask[:, :input_len] = False
action_mask = action_mask[:, 1:]
action_mask = action_mask[:, -(sequences.size(1) - input_len) :]
num_actions = action_mask.size(1)
actor_output = self.actor(sequences, attention_mask)["logits"]
action_log_probs = calc_action_log_probs(actor_output, sequences, num_actions)
base_model_output = self.initial_model(sequences, attention_mask)["logits"]
base_action_log_probs = calc_action_log_probs(base_model_output, sequences, num_actions)
value = self.critic(sequences, attention_mask)
r = self.reward_model(sequences, attention_mask)
reward = compute_reward(r, self.kl_coef, action_log_probs, base_action_log_probs, action_mask=action_mask)
advantage = reward - value
# TODO(ver217): maybe normalize adv
if advantage.ndim == 1:
advantage = advantage.unsqueeze(-1)
return Experience(sequences, action_log_probs, value, reward, advantage, attention_mask, action_mask)

View File

@ -1,6 +0,0 @@
from .wrapper import convert_to_xformer_model, recover_from_xformer_model
__all__ = [
"convert_to_xformer_model",
"recover_from_xformer_model",
]

View File

@ -1,90 +0,0 @@
from typing import Optional, Tuple
import torch
import xformers.ops as xops
from torch import Tensor
from transformers.models.opt.modeling_opt import OPTAttention
# This is modified from https://github.com/huggingface/transformers/blob/main/src/transformers/models/opt/modeling_opt.py
class XOPTAttention(OPTAttention):
# def _shape(self, tensor: Tensor, seq_len: int, bsz: int):
# return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).contiguous()
def forward(
self,
hidden_states: Tensor,
key_value_states: Optional[Tensor] = None,
past_key_value: Optional[Tensor] = None,
attention_mask: Optional[Tensor] = None,
layer_head_mask: Optional[Tensor] = None,
output_attentions: bool = False,
) -> Tuple[Tensor, Optional[Tensor], Optional[Tuple[Tensor]]]:
if not self.training:
return super().forward(
hidden_states, key_value_states, past_key_value, attention_mask, layer_head_mask, output_attentions
)
"""Input shape: Batch x Time x Channel"""
assert layer_head_mask is None, "Xformers attention does not support layer_head_mask"
assert not output_attentions, "Xformers attention does not support output_attentions"
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states)
# get key, value proj
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
query_states = self._shape(query_states, tgt_len, bsz).transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
attn_output = xops.memory_efficient_attention(
query_states,
key_states,
value_states,
attn_bias=xops.LowerTriangularMask(),
p=self.dropout if self.training else 0.0,
scale=self.scaling,
)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
attn_weights_reshaped = None
return attn_output, attn_weights_reshaped, past_key_value

View File

@ -1,18 +0,0 @@
import torch.nn as nn
from transformers.models.opt.modeling_opt import OPTAttention
from .opt_attn import XOPTAttention
def convert_to_xformer_model(model: nn.Module) -> nn.Module:
for module in model.modules():
if isinstance(module, OPTAttention):
module.__class__ = XOPTAttention
return model
def recover_from_xformer_model(model: nn.Module) -> nn.Module:
for module in model.modules():
if isinstance(module, XOPTAttention):
module.__class__ = OPTAttention
return model

View File

@ -1,15 +0,0 @@
from .base import Actor, Critic, RewardModel
from .lora import LoRAModule, convert_to_lora_module
from .loss import LogExpLoss, LogSigLoss, PolicyLoss, ValueLoss
__all__ = [
"Actor",
"Critic",
"RewardModel",
"PolicyLoss",
"ValueLoss",
"LogSigLoss",
"LogExpLoss",
"LoRAModule",
"convert_to_lora_module",
]

View File

@ -1,27 +0,0 @@
from typing import Union
import torch.nn as nn
from .actor import Actor
from .critic import Critic
from .reward_model import RewardModel
def get_base_model(model: Union[Actor, Critic, RewardModel]) -> nn.Module:
"""Get the base model of our wrapper classes.
For Actor, Critic and RewardModel, return ``model.model``,
it's usually a ``transformers.PreTrainedModel``.
Args:
model (nn.Module): model to get base model from
Returns:
nn.Module: the base model
"""
assert isinstance(
model, (Actor, Critic, RewardModel)
), f"Expect Actor, Critic or RewardModel, got {type(model)}, use unwrap_model first."
return model.model
__all__ = ["Actor", "Critic", "RewardModel", "get_base_model"]

View File

@ -1,33 +0,0 @@
from typing import Optional
import torch
import torch.nn as nn
from ..lora import LoRAModule
class Actor(LoRAModule):
"""
Actor model base class.
Args:
model (nn.Module): Actor Model.
lora_rank (int): LoRA rank.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(self, model: nn.Module, lora_rank: int = 0, lora_train_bias: str = "none") -> None:
super().__init__(lora_rank=lora_rank, lora_train_bias=lora_train_bias)
self.model = model
self.convert_to_lora()
def forward(
self,
input_ids: torch.LongTensor,
attention_mask: Optional[torch.Tensor] = None,
**model_kwargs,
) -> torch.Tensor:
"""Returns model output."""
output = self.model(input_ids, attention_mask=attention_mask, **model_kwargs)
return output

View File

@ -1,34 +0,0 @@
import torch
import torch.nn as nn
from ..lora import LoRAModule
class Critic(LoRAModule):
"""
Critic model base class.
Args:
model (nn.Module): Critic model.
value_head (nn.Module): Value head to get value.
lora_rank (int): LoRA rank.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(
self, model: nn.Module, value_head: nn.Module, lora_rank: int = 0, lora_train_bias: str = "none"
) -> None:
super().__init__(lora_rank=lora_rank, lora_train_bias=lora_train_bias)
self.model = model
self.value_head = value_head
self.convert_to_lora()
def forward(self, sequences: torch.LongTensor, attention_mask: torch.Tensor) -> torch.Tensor:
outputs = self.model(sequences, attention_mask=attention_mask)
last_hidden_states = outputs["last_hidden_state"]
sequence_lengths = torch.max(attention_mask * torch.arange(sequences.size(1), device=sequences.device), dim=1)[
0
]
sequence_hidden_states = last_hidden_states[torch.arange(last_hidden_states.size(0)), sequence_lengths]
values = self.value_head(sequence_hidden_states).squeeze(1) # ensure shape is (B, )
return values

View File

@ -1,46 +0,0 @@
from typing import Optional
import torch
import torch.nn as nn
from ..lora import LoRAModule
class RewardModel(LoRAModule):
"""
Reward model base class.
Args:
model (nn.Module): Reward model.
value_head (nn.Module): Value head to get reward score.
lora_rank (int): LoRA rank.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(
self,
model: nn.Module,
value_head: Optional[nn.Module] = None,
lora_rank: int = 0,
lora_train_bias: str = "none",
) -> None:
super().__init__(lora_rank=lora_rank, lora_train_bias=lora_train_bias)
self.model = model
self.convert_to_lora()
if value_head is not None:
if value_head.out_features != 1:
raise ValueError("The value head of reward model's output dim should be 1!")
self.value_head = value_head
else:
self.value_head = nn.Linear(model.config.n_embd, 1)
def forward(self, sequences: torch.LongTensor, attention_mask: torch.Tensor) -> torch.Tensor:
outputs = self.model(sequences, attention_mask=attention_mask)
last_hidden_states = outputs["last_hidden_state"]
sequence_lengths = torch.max(attention_mask * torch.arange(sequences.size(1), device=sequences.device), dim=1)[
0
]
sequence_hidden_states = last_hidden_states[torch.arange(last_hidden_states.size(0)), sequence_lengths]
values = self.value_head(sequence_hidden_states).squeeze(1) # ensure shape is (B, )
return values

View File

@ -1,5 +0,0 @@
from .bloom_actor import BLOOMActor
from .bloom_critic import BLOOMCritic
from .bloom_rm import BLOOMRM
__all__ = ["BLOOMActor", "BLOOMCritic", "BLOOMRM"]

View File

@ -1,36 +0,0 @@
from typing import Optional
from transformers import BloomConfig, BloomForCausalLM
from ..base import Actor
class BLOOMActor(Actor):
"""
BLOOM Actor model.
Args:
pretrained (str): Pretrained model name or path.
config (BloomConfig): Model config.
checkpoint (bool): Enable gradient checkpointing.
lora_rank (int): LoRA rank.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(
self,
pretrained: str = None,
config: Optional[BloomConfig] = None,
checkpoint: bool = False,
lora_rank: int = 0,
lora_train_bias: str = "none",
) -> None:
if pretrained is not None:
model = BloomForCausalLM.from_pretrained(pretrained)
elif config is not None:
model = BloomForCausalLM(config)
else:
model = BloomForCausalLM(BloomConfig())
if checkpoint:
model.gradient_checkpointing_enable()
super().__init__(model, lora_rank, lora_train_bias)

View File

@ -1,36 +0,0 @@
from typing import Optional
import torch.nn as nn
from transformers import BloomConfig, BloomModel
from ..base import Critic
class BLOOMCritic(Critic):
"""
BLOOM Critic model.
Args:
pretrained (str): Pretrained model name or path.
config (BloomConfig): Model config.
lora_rank (int): LoRA rank.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(
self,
pretrained: str = None,
config: Optional[BloomConfig] = None,
lora_rank: int = 0,
lora_train_bias: str = "none",
**kwargs,
) -> None:
if pretrained is not None:
model = BloomModel.from_pretrained(pretrained)
elif config is not None:
model = BloomModel(config)
else:
model = BloomModel(BloomConfig())
value_head = nn.Linear(model.config.hidden_size, 1)
super().__init__(model, value_head, lora_rank, lora_train_bias, **kwargs)

View File

@ -1,36 +0,0 @@
from typing import Optional
import torch.nn as nn
from transformers import BloomConfig, BloomModel
from ..base import RewardModel
class BLOOMRM(RewardModel):
"""
BLOOM Reward model.
Args:
pretrained (str): Pretrained model name or path.
config (BloomConfig): Model config.
lora_rank (int): LoRA rank.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(
self,
pretrained: str = None,
config: Optional[BloomConfig] = None,
lora_rank: int = 0,
lora_train_bias: str = "none",
) -> None:
if pretrained is not None:
model = BloomModel.from_pretrained(pretrained)
elif config is not None:
model = BloomModel(config)
else:
model = BloomModel(BloomConfig())
value_head = nn.Linear(model.config.hidden_size, 1)
value_head.weight.data.normal_(mean=0.0, std=1 / (model.config.hidden_size + 1))
super().__init__(model, value_head, lora_rank, lora_train_bias)

View File

@ -1,3 +0,0 @@
from .chatglm_actor import ChatGLMActor
__all__ = ["ChatGLMActor"]

View File

@ -1,31 +0,0 @@
from typing import Optional
from ..base import Actor
from .configuration_chatglm import ChatGLMConfig
from .modeling_chatglm import ChatGLMForConditionalGeneration
class ChatGLMActor(Actor):
"""
ChatGLM Actor model.
Args:
pretrained (str): Pretrained model name or path.
config (ChatGLMConfig): Model config.
checkpoint (bool): Enable gradient checkpointing.
do not support lora for now.
"""
def __init__(
self, pretrained: str = None, config: Optional[ChatGLMConfig] = None, checkpoint: bool = False
) -> None:
if pretrained is not None:
model = ChatGLMForConditionalGeneration.from_pretrained(pretrained)
elif config is not None:
model = ChatGLMForConditionalGeneration(config)
else:
model = ChatGLMForConditionalGeneration(ChatGLMConfig())
if checkpoint:
model.gradient_checkpointing_enable()
super().__init__(model, lora_rank=0, lora_train_bias="none")

View File

@ -1,442 +0,0 @@
"""
This code is copied from https://huggingface.co/THUDM/chatglm-6b/blob/main/tokenization_chatglm.py
"""
"""Tokenization classes for ChatGLM."""
import os
from typing import Dict, List, Optional, Union
import numpy as np
import sentencepiece as spm
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.tokenization_utils_base import BatchEncoding, EncodedInput
from transformers.utils import PaddingStrategy, logging
logger = logging.get_logger(__name__)
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"THUDM/chatglm-6b": 2048,
}
class TextTokenizer:
def __init__(self, model_path):
self.sp = spm.SentencePieceProcessor()
self.sp.Load(model_path)
self.num_tokens = self.sp.vocab_size()
def encode(self, text):
return self.sp.EncodeAsIds(text)
def decode(self, ids: List[int]):
return self.sp.DecodeIds(ids)
def tokenize(self, text):
return self.sp.EncodeAsPieces(text)
def convert_tokens_to_string(self, tokens):
return self.sp.DecodePieces(tokens)
def convert_tokens_to_ids(self, tokens):
return [self.sp.PieceToId(token) for token in tokens]
def convert_token_to_id(self, token):
return self.sp.PieceToId(token)
def convert_id_to_token(self, idx):
return self.sp.IdToPiece(idx)
def __len__(self):
return self.num_tokens
class SPTokenizer:
def __init__(
self,
vocab_file,
num_image_tokens=20000,
max_blank_length=80,
byte_fallback=True,
):
assert vocab_file is not None
self.vocab_file = vocab_file
self.num_image_tokens = num_image_tokens
self.special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "<unused_0>", "<sop>", "<eop>", "<ENC>", "<dBLOCK>"]
self.max_blank_length = max_blank_length
self.byte_fallback = byte_fallback
self.text_tokenizer = TextTokenizer(vocab_file)
def _get_text_tokenizer(self):
return self.text_tokenizer
@staticmethod
def get_blank_token(length: int):
assert length >= 2
return f"<|blank_{length}|>"
@staticmethod
def get_tab_token():
return f"<|tab|>"
@property
def num_text_tokens(self):
return self.text_tokenizer.num_tokens
@property
def num_tokens(self):
return self.num_image_tokens + self.num_text_tokens
@staticmethod
def _encode_whitespaces(text: str, max_len: int = 80):
text = text.replace("\t", SPTokenizer.get_tab_token())
for i in range(max_len, 1, -1):
text = text.replace(" " * i, SPTokenizer.get_blank_token(i))
return text
def _preprocess(self, text: str, linebreak=True, whitespaces=True):
if linebreak:
text = text.replace("\n", "<n>")
if whitespaces:
text = self._encode_whitespaces(text, max_len=self.max_blank_length)
return text
def encode(self, text: str, linebreak=True, whitespaces=True, add_dummy_prefix=True) -> List[int]:
"""
@param text: Text to encode.
@param linebreak: Whether to encode newline (\n) in text.
@param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding.
@param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text.
@param add_dummy_prefix: Whether to add dummy blank space in the beginning.
"""
text = self._preprocess(text, linebreak, whitespaces)
if not add_dummy_prefix:
text = "<n>" + text
tmp = self._get_text_tokenizer().encode(text)
tokens = [x + self.num_image_tokens for x in tmp]
return tokens if add_dummy_prefix else tokens[2:]
def postprocess(self, text):
text = text.replace("<n>", "\n")
text = text.replace(SPTokenizer.get_tab_token(), "\t")
for i in range(2, self.max_blank_length + 1):
text = text.replace(self.get_blank_token(i), " " * i)
return text
def decode(self, text_ids: List[int]) -> str:
ids = [int(_id) - self.num_image_tokens for _id in text_ids]
ids = [_id for _id in ids if _id >= 0]
text = self._get_text_tokenizer().decode(ids)
text = self.postprocess(text)
return text
def decode_tokens(self, tokens: List[str]) -> str:
text = self._get_text_tokenizer().convert_tokens_to_string(tokens)
text = self.postprocess(text)
return text
def tokenize(self, text: str, linebreak=True, whitespaces=True, add_dummy_prefix=True) -> List[str]:
"""
@param text: Text to encode.
@param linebreak: Whether to encode newline (\n) in text.
@param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding.
@param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text.
@param add_dummy_prefix: Whether to add dummy blank space in the beginning.
"""
text = self._preprocess(text, linebreak, whitespaces)
if not add_dummy_prefix:
text = "<n>" + text
tokens = self._get_text_tokenizer().tokenize(text)
return tokens if add_dummy_prefix else tokens[2:]
def __getitem__(self, x: Union[int, str]):
if isinstance(x, int):
if x < self.num_image_tokens:
return "<image_{}>".format(x)
else:
return self.text_tokenizer.convert_id_to_token(x - self.num_image_tokens)
elif isinstance(x, str):
if x.startswith("<image_") and x.endswith(">") and x[7:-1].isdigit():
return int(x[7:-1])
else:
return self.text_tokenizer.convert_token_to_id(x) + self.num_image_tokens
else:
raise ValueError("The key should be str or int.")
class ChatGLMTokenizer(PreTrainedTokenizer):
"""
Construct a ChatGLM tokenizer. Based on byte-level Byte-Pair-Encoding.
Args:
vocab_file (`str`):
Path to the vocabulary file.
"""
vocab_files_names = {"vocab_file": "ice_text.model"}
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask", "position_ids"]
def __init__(
self,
vocab_file,
do_lower_case=False,
remove_space=False,
bos_token="<sop>",
eos_token="<eop>",
end_token="</s>",
mask_token="[MASK]",
gmask_token="[gMASK]",
padding_side="left",
pad_token="<pad>",
unk_token="<unk>",
num_image_tokens=20000,
**kwargs,
) -> None:
super().__init__(
do_lower_case=do_lower_case,
remove_space=remove_space,
padding_side=padding_side,
bos_token=bos_token,
eos_token=eos_token,
end_token=end_token,
mask_token=mask_token,
gmask_token=gmask_token,
pad_token=pad_token,
unk_token=unk_token,
num_image_tokens=num_image_tokens,
**kwargs,
)
self.do_lower_case = do_lower_case
self.remove_space = remove_space
self.vocab_file = vocab_file
self.bos_token = bos_token
self.eos_token = eos_token
self.end_token = end_token
self.mask_token = mask_token
self.gmask_token = gmask_token
self.sp_tokenizer = SPTokenizer(vocab_file, num_image_tokens=num_image_tokens)
""" Initialisation """
@property
def gmask_token_id(self) -> Optional[int]:
if self.gmask_token is None:
return None
return self.convert_tokens_to_ids(self.gmask_token)
@property
def end_token_id(self) -> Optional[int]:
"""
`Optional[int]`: Id of the end of context token in the vocabulary. Returns `None` if the token has not been
set.
"""
if self.end_token is None:
return None
return self.convert_tokens_to_ids(self.end_token)
@property
def vocab_size(self):
"""Returns vocab size"""
return self.sp_tokenizer.num_tokens
def get_vocab(self):
"""Returns vocab as a dict"""
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def preprocess_text(self, inputs):
if self.remove_space:
outputs = " ".join(inputs.strip().split())
else:
outputs = inputs
if self.do_lower_case:
outputs = outputs.lower()
return outputs
def _tokenize(self, text, **kwargs):
"""Returns a tokenized string."""
text = self.preprocess_text(text)
seq = self.sp_tokenizer.tokenize(text)
return seq
def convert_tokens_to_string(self, tokens: List[str]) -> str:
return self.sp_tokenizer.decode_tokens(tokens)
def _decode(self, token_ids: Union[int, List[int]], **kwargs) -> str:
if isinstance(token_ids, int):
token_ids = [token_ids]
if len(token_ids) == 0:
return ""
if self.pad_token_id in token_ids: # remove pad
token_ids = list(filter((self.pad_token_id).__ne__, token_ids))
return super()._decode(token_ids, **kwargs)
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.sp_tokenizer[token]
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.sp_tokenizer[index]
def save_vocabulary(self, save_directory, filename_prefix=None):
"""
Save the vocabulary and special tokens file to a directory.
Args:
save_directory (`str`):
The directory in which to save the vocabulary.
filename_prefix (`str`, *optional*):
An optional prefix to add to the named of the saved files.
Returns:
`Tuple(str)`: Paths to the files saved.
"""
if os.path.isdir(save_directory):
vocab_file = os.path.join(save_directory, self.vocab_files_names["vocab_file"])
else:
vocab_file = save_directory
with open(self.vocab_file, "rb") as fin:
proto_str = fin.read()
with open(vocab_file, "wb") as writer:
writer.write(proto_str)
return (vocab_file,)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
gmask_id = self.sp_tokenizer[self.gmask_token]
self.sp_tokenizer[self.eos_token]
token_ids_0 = token_ids_0 + [gmask_id, self.sp_tokenizer[self.bos_token]]
if token_ids_1 is not None:
token_ids_0 = token_ids_0 + token_ids_1
return token_ids_0
def _pad(
self,
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
max_length: Optional[int] = None,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
pad_to_multiple_of: Optional[int] = None,
return_attention_mask: Optional[bool] = None,
) -> dict:
"""
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
Args:
encoded_inputs:
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
max_length: maximum length of the returned list and optionally padding length (see below).
Will truncate by taking into account the special tokens.
padding_strategy: PaddingStrategy to use for padding.
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
- PaddingStrategy.DO_NOT_PAD: Do not pad
The tokenizer padding sides are defined in self.padding_side:
- 'left': pads on the left of the sequences
- 'right': pads on the right of the sequences
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
`>= 7.5` (Volta).
return_attention_mask:
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
"""
# Load from model defaults
bos_token_id = self.sp_tokenizer[self.bos_token]
mask_token_id = self.sp_tokenizer[self.mask_token]
gmask_token_id = self.sp_tokenizer[self.gmask_token]
assert self.padding_side == "left"
required_input = encoded_inputs[self.model_input_names[0]]
seq_length = len(required_input)
if padding_strategy == PaddingStrategy.LONGEST:
max_length = len(required_input)
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
# Initialize attention mask if not present.
if max_length is not None:
if "attention_mask" not in encoded_inputs:
if bos_token_id in required_input:
context_length = required_input.index(bos_token_id)
else:
context_length = seq_length
attention_mask = np.ones((1, seq_length, seq_length))
attention_mask = np.tril(attention_mask)
attention_mask[:, :, :context_length] = 1
attention_mask = np.bool_(attention_mask < 0.5)
encoded_inputs["attention_mask"] = attention_mask
if "position_ids" not in encoded_inputs:
if bos_token_id in required_input:
context_length = required_input.index(bos_token_id)
else:
context_length = seq_length
position_ids = np.arange(seq_length, dtype=np.int64)
mask_token = mask_token_id if mask_token_id in required_input else gmask_token_id
if mask_token in required_input:
mask_position = required_input.index(mask_token)
position_ids[context_length:] = mask_position
block_position_ids = np.concatenate(
[
np.zeros(context_length, dtype=np.int64),
np.arange(1, seq_length - context_length + 1, dtype=np.int64),
]
)
encoded_inputs["position_ids"] = np.stack([position_ids, block_position_ids], axis=0)
if needs_to_be_padded:
difference = max_length - len(required_input)
if "attention_mask" in encoded_inputs:
encoded_inputs["attention_mask"] = np.pad(
encoded_inputs["attention_mask"],
pad_width=[(0, 0), (difference, 0), (difference, 0)],
mode="constant",
constant_values=True,
)
if "token_type_ids" in encoded_inputs:
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
"token_type_ids"
]
if "special_tokens_mask" in encoded_inputs:
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
if "position_ids" in encoded_inputs:
encoded_inputs["position_ids"] = np.pad(
encoded_inputs["position_ids"], pad_width=[(0, 0), (difference, 0)]
)
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
return encoded_inputs

View File

@ -1,101 +0,0 @@
"""
This code is copied from https://huggingface.co/THUDM/chatglm-6b/resolve/main/configuration_chatglm.py
"""
""" ChatGLM model configuration """
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
class ChatGLMConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`~ChatGLMModel`].
It is used to instantiate an ChatGLM model according to the specified arguments, defining the model
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
the ChatGLM-6B [THUDM/ChatGLM-6B](https://huggingface.co/THUDM/chatglm-6b) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used
to control the model outputs. Read the documentation from [`PretrainedConfig`]
for more information.
Args:
vocab_size (`int`, *optional*, defaults to 150528):
Vocabulary size of the ChatGLM-6B model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`~ChatGLMModel`] or
[`~TFChatGLMModel`].
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 28):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
inner_hidden_size (`int`, *optional*, defaults to 16384):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
max_sequence_length (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with.
Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
layernorm_epsilon (`float`, *optional*, defaults to 1e-5):
The epsilon used by the layer normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether the model should return the last key/values attentions (not used by all models).
Example:
```python
>>> from configuration_chatglm import ChatGLMConfig
>>> from modeling_chatglm import ChatGLMModel
>>> # Initializing a ChatGLM-6B THUDM/ChatGLM-6B style configuration
>>> configuration = ChatGLMConfig()
>>> # Initializing a model from the THUDM/ChatGLM-6B style configuration
>>> model = ChatGLMModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "chatglm"
def __init__(
self,
vocab_size=130528,
hidden_size=4096,
num_layers=28,
num_attention_heads=32,
layernorm_epsilon=1e-5,
use_cache=True,
bos_token_id=130004,
eos_token_id=130005,
mask_token_id=130000,
gmask_token_id=130001,
pad_token_id=3,
max_sequence_length=2048,
inner_hidden_size=16384,
position_encoding_2d=True,
quantization_bit=0,
pre_seq_len=None,
prefix_projection=False,
**kwargs,
):
self.num_layers = num_layers
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.max_sequence_length = max_sequence_length
self.layernorm_epsilon = layernorm_epsilon
self.inner_hidden_size = inner_hidden_size
self.use_cache = use_cache
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.mask_token_id = mask_token_id
self.gmask_token_id = gmask_token_id
self.position_encoding_2d = position_encoding_2d
self.quantization_bit = quantization_bit
self.pre_seq_len = pre_seq_len
self.prefix_projection = prefix_projection
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)

File diff suppressed because it is too large Load Diff

View File

@ -1,152 +0,0 @@
from typing import Any, Callable, Optional
import torch
import torch.distributed as dist
from transformers import PreTrainedTokenizer
from .base import Actor
try:
from transformers.generation_logits_process import (
LogitsProcessorList,
TemperatureLogitsWarper,
TopKLogitsWarper,
TopPLogitsWarper,
)
except ImportError:
from transformers.generation import LogitsProcessorList, TemperatureLogitsWarper, TopKLogitsWarper, TopPLogitsWarper
def _prepare_logits_processor(
top_k: Optional[int] = None, top_p: Optional[float] = None, temperature: Optional[float] = None
) -> LogitsProcessorList:
processor_list = LogitsProcessorList()
if temperature is not None and temperature != 1.0:
processor_list.append(TemperatureLogitsWarper(temperature))
if top_k is not None and top_k != 0:
processor_list.append(TopKLogitsWarper(top_k))
if top_p is not None and top_p < 1.0:
processor_list.append(TopPLogitsWarper(top_p))
return processor_list
def _is_sequence_finished(unfinished_sequences: torch.Tensor) -> bool:
if dist.is_initialized() and dist.get_world_size() > 1:
# consider DP
unfinished_sequences = unfinished_sequences.clone()
dist.all_reduce(unfinished_sequences)
return unfinished_sequences.max() == 0
def _sample(
model: Actor,
input_ids: torch.Tensor,
max_length: int,
early_stopping: bool = False,
eos_token_id: Optional[int] = None,
pad_token_id: Optional[int] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
temperature: Optional[float] = None,
prepare_inputs_fn: Optional[Callable[[torch.Tensor, Any], dict]] = None,
update_model_kwargs_fn: Optional[Callable[[dict, Any], dict]] = None,
**model_kwargs,
) -> torch.Tensor:
if input_ids.size(1) >= max_length:
return input_ids
logits_processor = _prepare_logits_processor(top_k, top_p, temperature)
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
for _ in range(input_ids.size(1), max_length):
model_inputs = (
prepare_inputs_fn(input_ids, **model_kwargs) if prepare_inputs_fn is not None else {"input_ids": input_ids}
)
outputs = model(**model_inputs)
# NOTE: this is correct only in left padding mode
next_token_logits = outputs["logits"][:, -1, :]
next_token_logits = logits_processor(input_ids, next_token_logits)
# sample
probs = torch.softmax(next_token_logits, dim=-1, dtype=torch.float)
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
# finished sentences should have their next token be a padding token
if eos_token_id is not None:
assert pad_token_id is not None, "If `eos_token_id` is defined, make sure that `pad_token_id` is defined."
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
# update generated ids, model inputs for next step
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
if update_model_kwargs_fn is not None:
model_kwargs = update_model_kwargs_fn(outputs, model_kwargs)
# if eos_token was found in one sentence, set sentence to finished
if eos_token_id is not None:
unfinished_sequences = unfinished_sequences.mul((next_tokens != eos_token_id).long())
# stop when each sentence is finished if early_stopping=True
if early_stopping and _is_sequence_finished(unfinished_sequences):
break
return input_ids
@torch.no_grad()
def generate(
model: Actor,
input_ids: torch.Tensor,
tokenizer: PreTrainedTokenizer,
max_length: int,
num_beams: int = 1,
do_sample: bool = True,
early_stopping: bool = False,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
temperature: Optional[float] = None,
prepare_inputs_fn: Optional[Callable[[torch.Tensor, Any], dict]] = None,
update_model_kwargs_fn: Optional[Callable[[dict, Any], dict]] = None,
**model_kwargs,
) -> torch.Tensor:
"""Generate token sequence. The returned sequence is input_ids + generated_tokens.
Args:
model (nn.Module): model
input_ids (torch.Tensor): input sequence
max_length (int): max length of the returned sequence
num_beams (int, optional): number of beams. Defaults to 1.
do_sample (bool, optional): whether to do sample. Defaults to True.
early_stopping (bool, optional): if True, the sequence length may be smaller than max_length due to finding eos. Defaults to False.
top_k (Optional[int], optional): the number of highest probability vocabulary tokens to keep for top-k-filtering. Defaults to None.
top_p (Optional[float], optional): If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation. Defaults to None.
temperature (Optional[float], optional): The value used to module the next token probabilities. Defaults to None.
prepare_inputs_fn (Optional[Callable[[torch.Tensor, Any], dict]], optional): Function to preprocess model inputs. Arguments of this function should be input_ids and model_kwargs. Defaults to None.
update_model_kwargs_fn (Optional[Callable[[dict, Any], dict]], optional): Function to update model_kwargs based on outputs. Arguments of this function should be outputs and model_kwargs. Defaults to None.
"""
assert tokenizer.padding_side == "left", "Current generation only supports left padding."
is_greedy_gen_mode = (num_beams == 1) and do_sample is False
is_sample_gen_mode = (num_beams == 1) and do_sample is True
is_beam_gen_mode = (num_beams > 1) and do_sample is False
if is_greedy_gen_mode:
# run greedy search
raise NotImplementedError
elif is_sample_gen_mode:
# run sample
return _sample(
model,
input_ids,
max_length,
early_stopping=early_stopping,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
top_k=top_k,
top_p=top_p,
temperature=temperature,
prepare_inputs_fn=prepare_inputs_fn,
update_model_kwargs_fn=update_model_kwargs_fn,
**model_kwargs,
)
elif is_beam_gen_mode:
raise NotImplementedError
else:
raise ValueError("Unsupported generation mode")

View File

@ -1,5 +0,0 @@
from .gpt_actor import GPTActor
from .gpt_critic import GPTCritic
from .gpt_rm import GPTRM
__all__ = ["GPTActor", "GPTCritic", "GPTRM"]

View File

@ -1,38 +0,0 @@
from typing import Optional
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
from ..base import Actor
class GPTActor(Actor):
"""
GPT Actor model.
Args:
pretrained (str): Pretrained model name or path.
config (GPT2Config): Model config.
checkpoint (bool): Enable gradient checkpointing.
lora_rank (int): Rank of the LoRa layer.
lora_train_bias (str): Bias training strategy for the LoRa layer.
"""
def __init__(
self,
pretrained: Optional[str] = None,
config: Optional[GPT2Config] = None,
checkpoint: bool = False,
lora_rank: int = 0,
lora_train_bias: str = "none",
**kwargs,
) -> None:
if pretrained is not None:
model = GPT2LMHeadModel.from_pretrained(pretrained)
elif config is not None:
model = GPT2LMHeadModel(config)
else:
model = GPT2LMHeadModel(GPT2Config())
if checkpoint:
model.gradient_checkpointing_enable()
super().__init__(model, lora_rank, lora_train_bias, **kwargs)

View File

@ -1,37 +0,0 @@
from typing import Optional
import torch.nn as nn
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
from transformers.models.gpt2.modeling_gpt2 import GPT2Model
from ..base import Critic
class GPTCritic(Critic):
"""
GPT Critic model.
Args:
pretrained (str): Pretrained model name or path.
config (GPT2Config): Model config.
lora_rank (int): Rank of the LO-RA decomposition.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(
self,
pretrained: Optional[str] = None,
config: Optional[GPT2Config] = None,
lora_rank: int = 0,
lora_train_bias: str = "none",
**kwargs,
) -> None:
if pretrained is not None:
model = GPT2Model.from_pretrained(pretrained)
elif config is not None:
model = GPT2Model(config)
else:
model = GPT2Model(GPT2Config())
value_head = nn.Linear(model.config.n_embd, 1)
super().__init__(model, value_head, lora_rank, lora_train_bias, **kwargs)

View File

@ -1,37 +0,0 @@
from typing import Optional
import torch.nn as nn
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
from transformers.models.gpt2.modeling_gpt2 import GPT2Model
from ..base import RewardModel
class GPTRM(RewardModel):
"""
GPT Reward model.
Args:
pretrained (str): Pretrained model name or path.
config (GPT2Config): Model config.
lora_rank (int): Rank of the low-rank approximation.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(
self,
pretrained: Optional[str] = None,
config: Optional[GPT2Config] = None,
lora_rank: int = 0,
lora_train_bias: str = "none",
) -> None:
if pretrained is not None:
model = GPT2Model.from_pretrained(pretrained)
elif config is not None:
model = GPT2Model(config)
else:
model = GPT2Model(GPT2Config())
value_head = nn.Linear(model.config.n_embd, 1)
value_head.weight.data.normal_(mean=0.0, std=1 / (model.config.n_embd + 1))
super().__init__(model, value_head, lora_rank, lora_train_bias)

View File

@ -1,5 +0,0 @@
from .llama_actor import LlamaActor
from .llama_critic import LlamaCritic
from .llama_rm import LlamaRM
__all__ = ["LlamaActor", "LlamaCritic", "LlamaRM"]

View File

@ -1,38 +0,0 @@
from typing import Optional
from transformers import LlamaConfig, LlamaForCausalLM
from ..base import Actor
class LlamaActor(Actor):
"""
Llama Actor model.
Args:
pretrained (str): Pretrained model name or path.
config (LlamaConfig): Model config.
checkpoint (bool): Enable gradient checkpointing.
lora_rank (int): LoRA rank.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(
self,
pretrained: Optional[str] = None,
config: Optional[LlamaConfig] = None,
checkpoint: bool = False,
lora_rank: int = 0,
lora_train_bias: str = "none",
) -> None:
if pretrained is not None:
model = LlamaForCausalLM.from_pretrained(pretrained)
elif config is not None:
model = LlamaForCausalLM(config)
else:
model = LlamaForCausalLM(LlamaConfig())
if checkpoint:
model.gradient_checkpointing_enable()
super().__init__(model, lora_rank, lora_train_bias)

View File

@ -1,36 +0,0 @@
from typing import Optional
import torch.nn as nn
from transformers import LlamaConfig, LlamaModel
from ..base import Critic
class LlamaCritic(Critic):
"""
Llama Critic model.
Args:
pretrained (str): Pretrained model name or path.
config (LlamaConfig): Model config.
lora_rank (int): LoRA rank.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(
self,
pretrained: Optional[str] = None,
config: Optional[LlamaConfig] = None,
lora_rank: int = 0,
lora_train_bias: str = "none",
**kwargs,
) -> None:
if pretrained is not None:
model = LlamaModel.from_pretrained(pretrained)
elif config is not None:
model = LlamaModel(config)
else:
model = LlamaModel(LlamaConfig())
value_head = nn.Linear(model.config.hidden_size, 1)
super().__init__(model, value_head, lora_rank, lora_train_bias, **kwargs)

View File

@ -1,37 +0,0 @@
from typing import Optional
import torch.nn as nn
from transformers import LlamaConfig, LlamaModel
from ..base import RewardModel
class LlamaRM(RewardModel):
"""
Llama Reward model.
Args:
pretrained (str): Pretrained model name or path.
config (LlamaConfig): Model config.
lora_rank (int): LoRA rank.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(
self,
pretrained: Optional[str] = None,
config: Optional[LlamaConfig] = None,
lora_rank: int = 0,
lora_train_bias: str = "none",
) -> None:
if pretrained is not None:
model = LlamaModel.from_pretrained(pretrained)
elif config is not None:
model = LlamaModel(config)
else:
model = LlamaModel(LlamaConfig())
value_head = nn.Linear(model.config.hidden_size, 1)
value_head.weight.data.normal_(mean=0.0, std=1 / (model.config.hidden_size + 1))
super().__init__(model, value_head, lora_rank, lora_train_bias)

View File

@ -1,97 +0,0 @@
from typing import Optional
import torch
import torch.nn as nn
from .utils import masked_mean
class GPTLMLoss(nn.Module):
"""
GPT Language Model Loss
"""
def __init__(self):
super().__init__()
# NOTE: default ignore_index is -100, which is equal to IGNORE_INDEX in sft_dataset.py
self.loss = nn.CrossEntropyLoss()
def forward(self, logits: torch.Tensor, labels: torch.Tensor) -> torch.Tensor:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
return self.loss(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
class PolicyLoss(nn.Module):
"""
Policy Loss for PPO
"""
def __init__(self, clip_eps: float = 0.2) -> None:
super().__init__()
self.clip_eps = clip_eps
def forward(
self,
log_probs: torch.Tensor,
old_log_probs: torch.Tensor,
advantages: torch.Tensor,
action_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
ratio = (log_probs - old_log_probs).exp()
surr1 = ratio * advantages
surr2 = ratio.clamp(1 - self.clip_eps, 1 + self.clip_eps) * advantages
loss = -torch.min(surr1, surr2)
if action_mask is not None:
loss = masked_mean(loss, action_mask)
loss = loss.mean()
return loss
class ValueLoss(nn.Module):
"""
Value Loss for PPO
"""
def __init__(self, clip_eps: float = 0.4) -> None:
super().__init__()
self.clip_eps = clip_eps
def forward(
self,
values: torch.Tensor,
old_values: torch.Tensor,
reward: torch.Tensor,
action_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
values_clipped = old_values + (values - old_values).clamp(-self.clip_eps, self.clip_eps)
surr1 = (values_clipped - reward) ** 2
surr2 = (values - reward) ** 2
loss = torch.max(surr1, surr2)
loss = loss.mean()
return 0.5 * loss
class LogSigLoss(nn.Module):
"""
Pairwise Loss for Reward Model
Details: https://arxiv.org/abs/2203.02155
"""
def forward(self, chosen_reward: torch.Tensor, reject_reward: torch.Tensor) -> torch.Tensor:
probs = torch.sigmoid(chosen_reward - reject_reward)
log_probs = torch.log(probs)
loss = -log_probs.mean()
return loss
class LogExpLoss(nn.Module):
"""
Pairwise Loss for Reward Model
Details: https://arxiv.org/abs/2204.05862
"""
def forward(self, chosen_reward: torch.Tensor, reject_reward: torch.Tensor) -> torch.Tensor:
loss = torch.log(1 + torch.exp(reject_reward - chosen_reward)).mean()
return loss

View File

@ -1,5 +0,0 @@
from .opt_actor import OPTActor
from .opt_critic import OPTCritic
from .opt_rm import OPTRM
__all__ = ["OPTActor", "OPTCritic", "OPTRM"]

View File

@ -1,37 +0,0 @@
from typing import Optional
from transformers.models.opt.configuration_opt import OPTConfig
from transformers.models.opt.modeling_opt import OPTForCausalLM
from ..base import Actor
class OPTActor(Actor):
"""
OPT Actor model.
Args:
pretrained (str): Pretrained model name or path.
config (OPTConfig): Model config.
checkpoint (bool): Enable gradient checkpointing.
lora_rank (int): Rank of the low-rank approximation.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(
self,
pretrained: Optional[str] = None,
config: Optional[OPTConfig] = None,
checkpoint: bool = False,
lora_rank: int = 0,
lora_train_bias: str = "none",
) -> None:
if pretrained is not None:
model = OPTForCausalLM.from_pretrained(pretrained)
elif config is not None:
model = OPTForCausalLM(config)
else:
model = OPTForCausalLM(OPTConfig())
if checkpoint:
model.gradient_checkpointing_enable()
super().__init__(model, lora_rank, lora_train_bias)

View File

@ -1,37 +0,0 @@
from typing import Optional
import torch.nn as nn
from transformers.models.opt.configuration_opt import OPTConfig
from transformers.models.opt.modeling_opt import OPTModel
from ..base import Critic
class OPTCritic(Critic):
"""
OPT Critic model.
Args:
pretrained (str): Pretrained model name or path.
config (OPTConfig): Model config.
lora_rank (int): Rank of the low-rank approximation.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(
self,
pretrained: Optional[str] = None,
config: Optional[OPTConfig] = None,
lora_rank: int = 0,
lora_train_bias: str = "none",
**kwargs,
) -> None:
if pretrained is not None:
model = OPTModel.from_pretrained(pretrained)
elif config is not None:
model = OPTModel(config)
else:
model = OPTModel(OPTConfig())
value_head = nn.Linear(model.config.word_embed_proj_dim, 1)
super().__init__(model, value_head, lora_rank, lora_train_bias, **kwargs)

View File

@ -1,36 +0,0 @@
from typing import Optional
import torch.nn as nn
from transformers import OPTConfig, OPTModel
from ..base import RewardModel
class OPTRM(RewardModel):
"""
OPT Reward model.
Args:
pretrained (str): Pretrained model name or path.
config (OPTConfig): Model config.
lora_rank (int): Rank of the low-rank approximation.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(
self,
pretrained: Optional[str] = None,
config: Optional[OPTConfig] = None,
lora_rank: int = 0,
lora_train_bias: str = "none",
) -> None:
if pretrained is not None:
model = OPTModel.from_pretrained(pretrained)
elif config is not None:
model = OPTModel(config)
else:
model = OPTModel(OPTConfig())
value_head = nn.Linear(model.config.word_embed_proj_dim, 1)
value_head.weight.data.normal_(mean=0.0, std=1 / (model.config.word_embed_proj_dim + 1))
super().__init__(model, value_head, lora_rank, lora_train_bias)

View File

@ -1,69 +0,0 @@
from typing import Optional, Union
import torch
import torch.nn.functional as F
def _compute_approx_kl(
log_probs: torch.Tensor, log_probs_base: torch.Tensor, action_mask: Optional[torch.Tensor] = None
) -> torch.Tensor:
"""
Compute the approximate KL divergence between two distributions.
Schulman blog: http://joschu.net/blog/kl-approx.html
Args:
log_probs: Log probabilities of the new distribution.
log_probs_base: Log probabilities of the base distribution.
action_mask: Mask for actions.
"""
log_ratio = log_probs_base - log_probs
approx_kl = (log_ratio.exp() - 1) - log_ratio
if action_mask is not None:
approx_kl = masked_mean(approx_kl, action_mask, dim=1)
return approx_kl
approx_kl = approx_kl.mean(dim=1)
return approx_kl
def compute_reward(
r: Union[torch.Tensor, float],
kl_coef: float,
log_probs: torch.Tensor,
log_probs_base: torch.Tensor,
action_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if kl_coef <= 0.0:
return r
kl = _compute_approx_kl(log_probs, log_probs_base, action_mask=action_mask)
reward = r - kl_coef * kl
return reward
def _log_probs_from_logits(logits: torch.Tensor, labels: torch.Tensor) -> torch.Tensor:
log_probs = F.log_softmax(logits, dim=-1)
log_probs_labels = log_probs.gather(dim=-1, index=labels.unsqueeze(-1))
return log_probs_labels.squeeze(-1)
def calc_action_log_probs(logits: torch.Tensor, sequences: torch.LongTensor, num_actions: int) -> torch.Tensor:
"""Calculate action log probs.
Args:
output (torch.Tensor): Output tensor of Actor.forward.logits.
sequences (torch.LongTensor): Input sequences.
num_actions (int): Number of actions.
Returns:
torch.Tensor: Action log probs.
"""
log_probs = _log_probs_from_logits(logits[:, :-1, :], sequences[:, 1:])
return log_probs[:, -num_actions:]
def masked_mean(tensor: torch.Tensor, mask: torch.Tensor, dim: int = 1) -> torch.Tensor:
tensor = tensor * mask
tensor = tensor.sum(dim=dim)
mask_sum = mask.sum(dim=dim)
mean = tensor / (mask_sum + 1e-8)
return mean

View File

@ -1,6 +0,0 @@
from .base import OnPolicyTrainer, SLTrainer
from .ppo import PPOTrainer
from .rm import RewardModelTrainer
from .sft import SFTTrainer
__all__ = ["SLTrainer", "OnPolicyTrainer", "RewardModelTrainer", "SFTTrainer", "PPOTrainer"]

View File

@ -1,5 +0,0 @@
from .base import Callback
from .performance_evaluator import PerformanceEvaluator
from .save_checkpoint import SaveCheckpoint
__all__ = ["Callback", "PerformanceEvaluator", "SaveCheckpoint"]

View File

@ -1,76 +0,0 @@
import os
import torch.distributed as dist
from coati.trainer.strategies import GeminiStrategy, LowLevelZeroStrategy, Strategy
from coati.trainer.utils import is_rank_0
from torch import nn
from torch.optim import Optimizer
from .base import Callback
class SaveCheckpoint(Callback):
"""
The callback for saving checkpoint for coati.
Only support saving actor and critic model.
A typical architecture of the saved checkpoint would be:
- checkpoint
- episode_x
- actor.pt
- actor-optim-rank-0.pt
- actor-optim-rank-1.pt
- critic.pt
- critic-optim-rank-0.pt
- critic-optim-rank-1.pt
- ...
Args:
path(str): the base path you want to save checkpoint, the checkpoint would be saved at `path/checkpoint`
interval(int): the interval episode of saving checkpoint
strategy(Strategy): the strategy used to train
actor(nn.Module): the actor model
critic(nn.Module): the critic model
actor_optim(Optimizer): the optimizer of actor
critic_optim(Optimizer): the optimizer of critic
"""
def __init__(
self,
path: str,
interval: int,
strategy: Strategy,
actor: nn.Module = None,
critic: nn.Module = None,
actor_optim: Optimizer = None,
critic_optim: Optimizer = None,
) -> None:
super().__init__()
self.path = os.path.join(path, "checkpoint")
self.interval = interval
self.strategy = strategy
self.model_dict = {"actor": [actor, actor_optim], "critic": [critic, critic_optim]}
def on_episode_end(self, episode: int) -> None:
if (episode + 1) % self.interval != 0:
return
base_path = os.path.join(self.path, f"episode_{episode}")
if not os.path.exists(base_path):
os.makedirs(base_path)
for model in self.model_dict.keys():
# save model
if self.model_dict[model][0] is None:
# saving only optimizer states is meaningless, so it would be skipped
continue
model_path = os.path.join(base_path, f"{model}.pt")
self.strategy.save_model(model=self.model_dict[model][0], path=model_path, only_rank0=True)
# save optimizer
if self.model_dict[model][1] is None:
continue
only_rank0 = not isinstance(self.strategy, (LowLevelZeroStrategy, GeminiStrategy))
rank = 0 if is_rank_0() else dist.get_rank()
optim_path = os.path.join(base_path, f"{model}-optim-rank-{rank}.pt")
self.strategy.save_optimizer(optimizer=self.model_dict[model][1], path=optim_path, only_rank0=only_rank0)

View File

@ -1,202 +0,0 @@
from typing import Dict, List, Optional
from coati.experience_buffer import NaiveExperienceBuffer
from coati.experience_maker import Experience, NaiveExperienceMaker
from coati.models.base import Actor, Critic, RewardModel, get_base_model
from coati.models.loss import GPTLMLoss, PolicyLoss, ValueLoss
from coati.models.utils import calc_action_log_probs
from torch.optim import Optimizer
from torch.utils.data import DataLoader, DistributedSampler
from tqdm import tqdm
from transformers import PreTrainedTokenizerBase
from colossalai.accelerator import get_accelerator
from .base import OnPolicyTrainer
from .callbacks import Callback
from .strategies import GeminiStrategy, Strategy
from .utils import CycledDataLoader, is_rank_0, to_device
def _set_default_generate_kwargs(strategy: Strategy, generate_kwargs: dict, actor: Actor) -> Dict:
unwrapped_model = strategy.unwrap_model(actor)
hf_model = get_base_model(unwrapped_model)
new_kwargs = {**generate_kwargs}
# use huggingface models method directly
if "prepare_inputs_fn" not in generate_kwargs and hasattr(hf_model, "prepare_inputs_for_generation"):
new_kwargs["prepare_inputs_fn"] = hf_model.prepare_inputs_for_generation
if "update_model_kwargs_fn" not in generate_kwargs and hasattr(hf_model, "_update_model_kwargs_for_generation"):
new_kwargs["update_model_kwargs_fn"] = hf_model._update_model_kwargs_for_generation
return new_kwargs
class PPOTrainer(OnPolicyTrainer):
"""
Trainer for PPO algorithm.
Args:
strategy (Strategy): the strategy to use for training
actor (Actor): the actor model in ppo algorithm
critic (Critic): the critic model in ppo algorithm
reward_model (RewardModel): the reward model in rlhf algorithm to make reward of sentences
initial_model (Actor): the initial model in rlhf algorithm to generate reference logics to limit the update of actor
actor_optim (Optimizer): the optimizer to use for actor model
critic_optim (Optimizer): the optimizer to use for critic model
kl_coef (float, defaults to 0.1): the coefficient of kl divergence loss
train_batch_size (int, defaults to 8): the batch size to use for training
buffer_limit (int, defaults to 0): the max_size limitation of buffer
buffer_cpu_offload (bool, defaults to True): whether to offload buffer to cpu
eps_clip (float, defaults to 0.2): the clip coefficient of policy loss
vf_coef (float, defaults to 1.0): the coefficient of value loss
ptx_coef (float, defaults to 0.9): the coefficient of ptx loss
value_clip (float, defaults to 0.4): the clip coefficient of value loss
sample_buffer (bool, defaults to False): whether to sample from buffer
dataloader_pin_memory (bool, defaults to True): whether to pin memory for data loader
offload_inference_models (bool, defaults to True): whether to offload inference models to cpu during training process
callbacks (List[Callback], defaults to []): the callbacks to call during training process
generate_kwargs (dict, optional): the kwargs to use while model generating
"""
def __init__(
self,
strategy: Strategy,
actor: Actor,
critic: Critic,
reward_model: RewardModel,
initial_model: Actor,
actor_optim: Optimizer,
critic_optim: Optimizer,
tokenizer: PreTrainedTokenizerBase,
kl_coef: float = 0.1,
ptx_coef: float = 0.9,
train_batch_size: int = 8,
buffer_limit: int = 0,
buffer_cpu_offload: bool = True,
eps_clip: float = 0.2,
vf_coef: float = 1.0,
value_clip: float = 0.4,
sample_buffer: bool = False,
dataloader_pin_memory: bool = True,
offload_inference_models: bool = True,
callbacks: List[Callback] = [],
**generate_kwargs,
) -> None:
if isinstance(strategy, GeminiStrategy):
assert not offload_inference_models, "GeminiPlugin is not compatible with manual model.to('cpu')"
data_buffer = NaiveExperienceBuffer(train_batch_size, buffer_limit, buffer_cpu_offload)
super().__init__(strategy, data_buffer, sample_buffer, dataloader_pin_memory, callbacks)
self.generate_kwargs = _set_default_generate_kwargs(strategy, generate_kwargs, actor)
self.experience_maker = NaiveExperienceMaker(actor, critic, reward_model, initial_model, tokenizer, kl_coef)
self.actor = actor
self.critic = critic
self.tokenizer = tokenizer
self.actor_loss_fn = PolicyLoss(eps_clip)
self.critic_loss_fn = ValueLoss(value_clip)
self.vf_coef = vf_coef
self.ptx_loss_fn = GPTLMLoss()
self.ptx_coef = ptx_coef
self.actor_optim = actor_optim
self.critic_optim = critic_optim
self.offload_inference_models = offload_inference_models
self.device = get_accelerator().get_current_device()
def _before_fit(
self,
prompt_dataloader: DataLoader,
pretrain_dataloader: DataLoader,
log_dir: Optional[str] = None,
use_wandb: bool = False,
):
"""
Args:
prompt_dataloader (DataLoader): the dataloader to use for prompt data
pretrain_dataloader (DataLoader): the dataloader to use for pretrain data
"""
self.prompt_dataloader = CycledDataLoader(prompt_dataloader)
self.pretrain_dataloader = CycledDataLoader(pretrain_dataloader)
self.writer = None
if use_wandb and is_rank_0():
assert log_dir is not None, "log_dir must be provided when use_wandb is True"
import wandb
wandb.init(project="Coati-ppo", sync_tensorboard=True)
if log_dir is not None and is_rank_0():
import os
import time
from torch.utils.tensorboard import SummaryWriter
log_dir = os.path.join(log_dir, "ppo")
log_dir = os.path.join(log_dir, time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime()))
self.writer = SummaryWriter(log_dir=log_dir)
def _make_experience(self, collect_step: int) -> Experience:
prompts = self.prompt_dataloader.next()
if self.offload_inference_models:
# TODO(ver217): this may be controlled by strategy if they are prepared by strategy
self.experience_maker.initial_model.to(self.device)
self.experience_maker.reward_model.to(self.device)
assert isinstance(prompts, dict), f'Unsupported input type "{type(prompts)}"'
return self.experience_maker.make_experience(**prompts, **self.generate_kwargs)
def _training_step(self, experience: Experience):
self.actor.train()
self.critic.train()
# policy loss
num_actions = experience.action_log_probs.size(1)
actor_logits = self.actor(experience.sequences, experience.attention_mask)["logits"]
action_log_probs = calc_action_log_probs(actor_logits, experience.sequences, num_actions)
actor_loss = self.actor_loss_fn(
action_log_probs, experience.action_log_probs, experience.advantages, action_mask=experience.action_mask
)
actor_loss = (1 - self.ptx_coef) * actor_loss
self.strategy.backward(actor_loss, self.actor, self.actor_optim)
# ptx loss
if self.ptx_coef != 0:
batch = self.pretrain_dataloader.next()
batch = to_device(batch, self.device)
ptx_log_probs = self.actor(batch["input_ids"], batch["attention_mask"])["logits"]
ptx_loss = self.ptx_coef * self.ptx_loss_fn(ptx_log_probs, batch["labels"])
self.strategy.backward(ptx_loss, self.actor, self.actor_optim)
self.strategy.optimizer_step(self.actor_optim)
self.actor_optim.zero_grad()
# value loss
values = self.critic(experience.sequences, attention_mask=experience.attention_mask)
critic_loss = self.critic_loss_fn(values, experience.values, experience.reward)
critic_loss = critic_loss * self.vf_coef
self.strategy.backward(critic_loss, self.critic, self.critic_optim)
self.strategy.optimizer_step(self.critic_optim)
self.critic_optim.zero_grad()
def _learn(self, update_step: int):
if self.offload_inference_models:
self.experience_maker.initial_model.to("cpu")
self.experience_maker.reward_model.to("cpu")
# buffer may be empty at first, we should rebuild at each training
if self.sample_buffer:
experience = self.data_buffer.sample()
self._on_learn_batch_start()
experience.to_device(self.device)
self._training_step(experience)
self._on_learn_batch_end(experience)
else:
if isinstance(self.dataloader.sampler, DistributedSampler):
self.dataloader.sampler.set_epoch(update_step)
pbar = tqdm(self.dataloader, desc=f"Train epoch [{update_step + 1}]", disable=not is_rank_0())
for experience in pbar:
self._on_learn_batch_start()
experience.to_device(self.device)
self._training_step(experience)
self._on_learn_batch_end(experience)

View File

@ -1,123 +0,0 @@
from typing import Callable, Optional
import torch
import tqdm
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler
from torch.utils.data import DataLoader
from .base import SLTrainer
from .strategies import Strategy
from .utils import is_rank_0
class RewardModelTrainer(SLTrainer):
"""
Trainer to use while training reward model.
Args:
model (torch.nn.Module): the model to train
strategy (Strategy): the strategy to use for training
optim (Optimizer): the optimizer to use for training
lr_scheduler (_LRScheduler): the lr scheduler to use for training
loss_fn (callable): the loss function to use for training
max_epochs (int, defaults to 2): the number of epochs to train
"""
def __init__(
self,
model,
strategy: Strategy,
optim: Optimizer,
lr_scheduler: _LRScheduler,
loss_fn: Callable,
max_epochs: int = 1,
) -> None:
super().__init__(strategy, max_epochs, model, optim)
self.loss_fn = loss_fn
self.scheduler = lr_scheduler
self.num_train_step = 0
def _eval(self, epoch):
if self.eval_dataloader is not None:
self.model.eval()
dist, num_correct, num_samples = 0, 0, 0
with torch.no_grad():
for chosen_ids, c_mask, reject_ids, r_mask in self.eval_dataloader:
chosen_ids = chosen_ids.squeeze(1).to(torch.cuda.current_device())
c_mask = c_mask.squeeze(1).to(torch.cuda.current_device())
reject_ids = reject_ids.squeeze(1).to(torch.cuda.current_device())
r_mask = r_mask.squeeze(1).to(torch.cuda.current_device())
chosen_reward = self.model(chosen_ids, attention_mask=c_mask)
reject_reward = self.model(reject_ids, attention_mask=r_mask)
num_samples += chosen_ids.size(0)
num_correct += (chosen_reward > reject_reward).sum().item()
dist += (chosen_reward - reject_reward).mean().item()
self.dist = dist / len(self.eval_dataloader)
self.acc = num_correct / num_samples
if self.writer:
self.writer.add_scalar("eval/dist", self.dist, epoch)
self.writer.add_scalar("eval/acc", self.acc, epoch)
def _train(self, epoch):
self.model.train()
step_bar = tqdm.trange(
len(self.train_dataloader), desc=f"Epoch {epoch + 1}/{self.max_epochs}", disable=not is_rank_0()
)
for chosen_ids, c_mask, reject_ids, r_mask in self.train_dataloader:
chosen_ids = chosen_ids.squeeze(1).to(torch.cuda.current_device())
c_mask = c_mask.squeeze(1).to(torch.cuda.current_device())
reject_ids = reject_ids.squeeze(1).to(torch.cuda.current_device())
r_mask = r_mask.squeeze(1).to(torch.cuda.current_device())
chosen_reward = self.model(chosen_ids, attention_mask=c_mask)
reject_reward = self.model(reject_ids, attention_mask=r_mask)
loss = self.loss_fn(chosen_reward, reject_reward)
self.strategy.backward(loss, self.model, self.optimizer)
self.strategy.optimizer_step(self.optimizer)
self.optimizer.zero_grad()
if self.writer:
self.writer.add_scalar("train/loss", loss.item(), self.num_train_step)
self.writer.add_scalar("train/lr", self.optimizer.param_groups[0]["lr"], self.num_train_step)
self.writer.add_scalar("train/dist", (chosen_reward - reject_reward).mean().item(), self.num_train_step)
self.writer.add_scalar(
"train/acc", (chosen_reward > reject_reward).float().mean().item(), self.num_train_step
)
self.num_train_step += 1
if self.num_train_step % 100 == 0:
self.scheduler.step()
step_bar.update()
step_bar.close()
def _before_fit(
self,
train_dataloader: DataLoader,
eval_dataloader: DataLoader,
log_dir: Optional[str] = None,
use_wandb: bool = False,
):
"""
Args:
train_dataloader (DataLoader): the dataloader to use for training
eval_dataloader (DataLoader): the dataloader to use for evaluation
"""
self.train_dataloader = train_dataloader
self.eval_dataloader = eval_dataloader
self.writer = None
if use_wandb and is_rank_0():
assert log_dir is not None, "log_dir must be provided when use_wandb is True"
import wandb
wandb.init(project="Coati-rm", sync_tensorboard=True)
if log_dir is not None and is_rank_0():
import os
import time
from torch.utils.tensorboard import SummaryWriter
log_dir = os.path.join(log_dir, "rm")
log_dir = os.path.join(log_dir, time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime()))
self.writer = SummaryWriter(log_dir=log_dir)

View File

@ -1,130 +0,0 @@
from typing import Optional
import torch
import torch.distributed as dist
import tqdm
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler
from torch.utils.data import DataLoader
from colossalai.logging import DistributedLogger
from .base import SLTrainer
from .strategies import GeminiStrategy, Strategy
from .utils import is_rank_0, to_device
class SFTTrainer(SLTrainer):
"""
Trainer to use while training reward model.
Args:
model (torch.nn.Module): the model to train
strategy (Strategy): the strategy to use for training
optim(Optimizer): the optimizer to use for training
lr_scheduler(_LRScheduler): the lr scheduler to use for training
max_epochs (int, defaults to 2): the number of epochs to train
accumulation_steps (int, defaults to 8): the number of steps to accumulate gradients
"""
def __init__(
self,
model,
strategy: Strategy,
optim: Optimizer,
lr_scheduler: _LRScheduler,
max_epochs: int = 2,
accumulation_steps: int = 8,
) -> None:
if accumulation_steps > 1:
assert not isinstance(
strategy, GeminiStrategy
), "Accumulation steps are not supported in stage 3 of ColossalAI"
super().__init__(strategy, max_epochs, model, optim)
self.accumulation_steps = accumulation_steps
self.scheduler = lr_scheduler
self.num_train_step = 0
self.num_eval_step = 0
def _train(self, epoch: int):
self.model.train()
step_bar = tqdm.trange(
len(self.train_dataloader) // self.accumulation_steps,
desc=f"Epoch {epoch + 1}/{self.max_epochs}",
disable=not is_rank_0(),
)
for i, batch in enumerate(self.train_dataloader):
batch = to_device(batch, torch.cuda.current_device())
outputs = self.model(batch["input_ids"], attention_mask=batch["attention_mask"], labels=batch["labels"])
loss = outputs.loss / self.accumulation_steps
self.total_loss += loss.item()
self.strategy.backward(loss, self.model, self.optimizer)
# gradient accumulation
if (i + 1) % self.accumulation_steps == 0:
self.strategy.optimizer_step(self.optimizer)
self.optimizer.zero_grad()
self.scheduler.step()
if self.writer:
self.writer.add_scalar("train/loss", self.total_loss, self.num_train_step)
self.writer.add_scalar("train/lr", self.scheduler.get_last_lr()[0], self.num_train_step)
self.num_train_step += 1
self.total_loss = 0
step_bar.update()
step_bar.close()
def _eval(self, epoch: int):
if self.eval_dataloader is not None:
self.model.eval()
with torch.no_grad():
loss_sum, num_seen = 0, 0
for batch in self.eval_dataloader:
batch = to_device(batch, torch.cuda.current_device())
outputs = self.model(
batch["input_ids"], attention_mask=batch["attention_mask"], labels=batch["labels"]
)
loss_sum += outputs.loss.item()
num_seen += batch["input_ids"].size(0)
loss_mean = loss_sum / num_seen
if dist.get_rank() == 0:
self.logger.info(f"Eval Epoch {epoch}/{self.max_epochs} loss {loss_mean}")
if self.writer:
self.writer.add_scalar("eval/loss", loss_mean, self.num_eval_step)
self.num_eval_step += 1
def _before_fit(
self,
train_dataloader: DataLoader,
eval_dataloader: Optional[DataLoader] = None,
logger: Optional[DistributedLogger] = None,
log_dir: Optional[str] = None,
use_wandb: bool = False,
):
"""
Args:
train_dataloader: the dataloader to use for training
eval_dataloader: the dataloader to use for evaluation
"""
self.train_dataloader = train_dataloader
self.eval_dataloader = eval_dataloader
self.logger = logger
self.writer = None
if use_wandb and is_rank_0():
assert log_dir is not None, "log_dir must be provided when use_wandb is True"
import wandb
wandb.init(project="Coati-sft", sync_tensorboard=True)
if log_dir is not None and is_rank_0():
import os
import time
from torch.utils.tensorboard import SummaryWriter
log_dir = os.path.join(log_dir, "sft")
log_dir = os.path.join(log_dir, time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime()))
self.writer = SummaryWriter(log_dir=log_dir)
self.total_loss = 0

View File

@ -1,5 +0,0 @@
from .base import Strategy
from .colossalai import GeminiStrategy, LowLevelZeroStrategy
from .ddp import DDPStrategy
__all__ = ["Strategy", "DDPStrategy", "LowLevelZeroStrategy", "GeminiStrategy"]

View File

@ -1,137 +0,0 @@
from abc import ABC, abstractmethod
from contextlib import nullcontext
from typing import Callable, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from coati.experience_buffer import ExperienceBuffer
from torch.optim import Optimizer
from torch.utils.data import DataLoader
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from colossalai.booster import Booster
from colossalai.booster.plugin import Plugin
from .sampler import DistributedSampler
_BoostArgSpec = Union[nn.Module, Tuple[nn.Module, Optimizer], Dict]
class Strategy(ABC):
"""
Base class for training strategies.
"""
def __init__(self, plugin_initializer: Callable[..., Optional[Plugin]] = lambda: None) -> None:
super().__init__()
# NOTE: dist must be initialized before Booster
self.setup_distributed()
self.plugin = plugin_initializer()
self.booster = Booster(plugin=self.plugin)
self._post_init()
@abstractmethod
def _post_init(self) -> None:
pass
def backward(self, loss: torch.Tensor, model: nn.Module, optimizer: Optimizer, **kwargs) -> None:
self.booster.backward(loss, optimizer)
def optimizer_step(self, optimizer: Optimizer, **kwargs) -> None:
optimizer.step()
@abstractmethod
def setup_distributed(self) -> None:
pass
@abstractmethod
def setup_dataloader(self, data_buffer: ExperienceBuffer, pin_memory: bool = False) -> DataLoader:
pass
def model_init_context(self):
return nullcontext()
def prepare(self, *boost_args: _BoostArgSpec) -> Union[List[_BoostArgSpec], _BoostArgSpec]:
"""Prepare [model | (model, optimizer) | Dict] based on each strategy.
NOTE: the keys of Dict must be a subset of `self.booster.boost`'s arguments.
Example::
>>> # e.g., include lr_scheduler
>>> result_dict = strategy.prepare(dict(model=model, lr_scheduler=lr_scheduler))
>>> # when fine-tuning actor and critic
>>> (actor, actor_optim), (critic, critic_optim), reward_model, initial_model = strategy.prepare((actor, actor_optim), (critic, critic_optim), reward_model, initial_model)
>>> # or when training reward model
>>> (reward_model, reward_model_optim) = strategy.prepare((reward_model, reward_model_optim))
>>> # or just inference
>>> actor, critic = strategy.prepare(actor, critic)
Returns:
Union[List[_BoostArgSpec], _BoostArgSpec]: [model | (model, optimizer) | Dict] in the original order.
"""
rets = []
for arg in boost_args:
if isinstance(arg, nn.Module):
model, *_ = self.booster.boost(arg)
rets.append(model)
elif isinstance(arg, tuple):
try:
model, optimizer = arg
except ValueError:
raise RuntimeError(f'Expect (model, optimizer) pair, got a tuple with size "{len(arg)}"')
model, optimizer, *_ = self.booster.boost(model=model, optimizer=optimizer)
rets.append((model, optimizer))
elif isinstance(arg, Dict):
model, optimizer, criterion, dataloader, lr_scheduler = self.booster.boost(**arg)
boost_result = dict(
model=model,
optimizer=optimizer,
criterion=criterion,
dataloader=dataloader,
lr_scheduler=lr_scheduler,
)
# remove None values
boost_result = {key: value for key, value in boost_result.items() if value is not None}
rets.append(boost_result)
else:
raise RuntimeError(f"Type {type(arg)} is not supported")
return rets[0] if len(rets) == 1 else rets
@staticmethod
def unwrap_model(model: nn.Module) -> nn.Module:
"""Get the unwrapped model from a wrapped model made by Strategy.prepare.
Args:
model (nn.Module): the model to unwrap
Returns:
nn.Module: the original model
"""
return model
def save_model(self, model: nn.Module, path: str, shard: bool = False, **kwargs) -> None:
self.booster.save_model(model, path, shard=shard, **kwargs)
def load_model(self, model: nn.Module, path: str, strict: bool = True) -> None:
self.booster.load_model(model, path, strict)
def save_optimizer(self, optimizer: Optimizer, path: str, only_rank0: bool = False, **kwargs) -> None:
self.booster.save_optimizer(optimizer, path, shard=not only_rank0, **kwargs)
def load_optimizer(self, optimizer: Optimizer, path: str) -> None:
self.booster.load_optimizer(optimizer, path)
def setup_sampler(self, dataset) -> DistributedSampler:
# FIXME(cwher): this is only invoked in train_on_ray, not tested after adapt Boost API.
return DistributedSampler(dataset, 1, 0)
@abstractmethod
def save_pretrained(
self, model: nn.Module, path: str, only_rank0: bool = True, tokenizer: Optional[PreTrainedTokenizerBase] = None
) -> None:
pass
@abstractmethod
def get_model_state_dict_shard(self, model: nn.Module, **config):
pass

View File

@ -1,209 +0,0 @@
import warnings
from typing import Optional
import torch.nn as nn
import colossalai
from colossalai.booster.plugin import GeminiPlugin, LowLevelZeroPlugin
from colossalai.booster.plugin.low_level_zero_plugin import LowLevelZeroModel
from colossalai.zero.gemini.gemini_ddp import GeminiDDP
from .ddp import DDPStrategy
class LowLevelZeroStrategy(DDPStrategy):
"""
The strategy for training with ColossalAI.
Args:
stage(int): The stage to use in ZeRO. Choose in (1, 2)
precision(str): The precision to use. Choose in ('fp32', 'fp16').
seed(int): The seed for the random number generator.
placement_policy(str): The placement policy for gemini. Choose in ('cpu', 'cuda')
If it is cpu, parameters, gradients and optimizer states will be offloaded to CPU,
If it is cuda, they will not be offloaded, which means max CUDA memory will be used. It is the fastest.
reduce_bucket_size(int): The reduce bucket size in bytes. Only for ZeRO-1 and ZeRO-2.
overlap_communication(bool): Whether to overlap communication and computation. Only for ZeRO-1 and ZeRO-2.
initial_scale(float): The initial scale for the optimizer.
growth_factor(float): The growth factor for the optimizer.
backoff_factor(float): The backoff factor for the optimizer.
growth_interval(int): The growth interval for the optimizer.
hysteresis(int): The hysteresis for the optimizer.
min_scale(float): The minimum scale for the optimizer.
max_scale(float): The maximum scale for the optimizer.
max_norm(float): The maximum norm for the optimizer.
norm_type(float): The norm type for the optimizer.
"""
def __init__(
self,
stage: int = 2,
precision: str = "fp16",
seed: int = 42,
placement_policy: str = "cuda",
reduce_bucket_size: int = 12 * 1024**2, # only for stage 1&2
overlap_communication: bool = True, # only for stage 1&2
initial_scale: float = 2**16,
growth_factor: float = 2,
backoff_factor: float = 0.5,
growth_interval: int = 1000,
hysteresis: int = 2,
min_scale: float = 1,
max_scale: float = 2**32,
max_norm: float = 0.0,
norm_type: float = 2.0,
) -> None:
assert stage in (1, 2), f'Unsupported stage "{stage}"'
assert placement_policy in ("cpu", "cuda"), f'Unsupported placement policy "{placement_policy}"'
assert precision in ("fp32", "fp16"), f'Unsupported precision "{precision}"'
plugin_initializer = lambda: LowLevelZeroPlugin(
stage=stage,
precision=precision,
reduce_bucket_size_in_m=reduce_bucket_size,
overlap_communication=overlap_communication,
cpu_offload=(placement_policy == "cpu"),
initial_scale=initial_scale,
growth_factor=growth_factor,
backoff_factor=backoff_factor,
growth_interval=growth_interval,
hysteresis=hysteresis,
min_scale=min_scale,
max_scale=max_scale,
max_norm=max_norm,
norm_type=norm_type,
)
super().__init__(seed, plugin_initializer)
def _post_init(self) -> None:
assert isinstance(
self.plugin, LowLevelZeroPlugin
), f"{type(self).__name__}'s plugin is not initialized properly."
def setup_distributed(self) -> None:
colossalai.launch_from_torch({}, seed=self.seed)
def unwrap_model(self, model: nn.Module) -> nn.Module:
assert isinstance(model, LowLevelZeroModel)
return model.module
def get_model_state_dict_shard(self, model: nn.Module, **config):
assert isinstance(model, LowLevelZeroModel)
yield from model.state_dict_shard(max_shard_size=1024, only_rank_0=False)
class GeminiStrategy(DDPStrategy):
"""
The strategy for training with ColossalAI.
Args:
seed(int): The seed for the random number generator.
shard_init(bool): Whether to shard the model parameters during initialization. Only for ZeRO-3.
This is not compatible with `from_pretrained()`. We temporarily disable this and will support it in the future.
placement_policy(str): The placement policy for gemini. Choose in ('cpu', 'cuda')
If it is cpu, parameters, gradients and optimizer states will be offloaded to CPU,
If it is cuda, they will not be offloaded, which means max CUDA memory will be used. It is the fastest.
pin_memory(bool): Whether to pin the memory for the data loader. Only for ZeRO-3.
force_outputs_fp32(bool): Whether to force the outputs to be fp32. Only for ZeRO-3.
search_range_m(int): The number of search range for the chunk size, divided by 2^20. Only for ZeRO-3.
hidden_dim(optional, int): The hidden dimension for the gemini. Only for ZeRO-3.
min_chunk_size_m(float): The minimum chunk size divided by 2^20. Only for ZeRO-3.
gpu_margin_mem_ratio(float): The margin memory ratio for the GPU. Only for ZeRO-3.
initial_scale(float): The initial scale for the optimizer.
growth_factor(float): The growth factor for the optimizer.
backoff_factor(float): The backoff factor for the optimizer.
growth_interval(int): The growth interval for the optimizer.
hysteresis(int): The hysteresis for the optimizer.
min_scale(float): The minimum scale for the optimizer.
max_scale(float): The maximum scale for the optimizer.
max_norm(float): The maximum norm for the optimizer.
norm_type(float): The norm type for the optimizer.
"""
def __init__(
self,
seed: int = 42,
shard_init: bool = False, # only for stage 3
placement_policy: str = "auto",
shard_param_frac: float = 1.0, # only for static placement
offload_optim_frac: float = 0.0, # only for static placement
offload_param_frac: float = 0.0, # only for static placement
pin_memory: bool = True, # only for stage 3
force_outputs_fp32: bool = False, # only for stage 3
search_range_m: int = 32, # only for stage 3
hidden_dim: Optional[int] = None, # only for stage 3
min_chunk_size_m: float = 32, # only for stage 3
gpu_margin_mem_ratio: float = 0.0, # only for stage 3
initial_scale: float = 2**16,
growth_factor: float = 2,
backoff_factor: float = 0.5,
growth_interval: int = 1000,
hysteresis: int = 2,
min_scale: float = 1,
max_scale: float = 2**32,
max_norm: float = 0.0,
norm_type: float = 2.0,
) -> None:
# TODO(ver217): support shard_init when using from_pretrained()
if shard_init:
warnings.warn(
f"Shard init is not supported model.from_pretrained() yet. "
"Please load weights after strategy.prepare()"
)
self.shard_init = shard_init
warnings.warn(f"Stage 3 only supports fp16. Precision is set to fp16.")
# colossalai has changed api for get_current_device in 0.3.4 version or newer
try:
from colossalai.accelerator import get_accelerator
chunk_init_device = get_accelerator().get_current_device()
except:
from colossalai.utils import get_current_device
chunk_init_device = get_current_device()
# NOTE: dist should be initialized before calling get_current_device()
plugin_initializer = lambda: GeminiPlugin(
chunk_init_device=chunk_init_device,
placement_policy=placement_policy,
shard_param_frac=shard_param_frac,
offload_optim_frac=offload_optim_frac,
offload_param_frac=offload_param_frac,
precision="fp16",
pin_memory=pin_memory,
force_outputs_fp32=force_outputs_fp32,
strict_ddp_mode=shard_init,
search_range_m=search_range_m,
hidden_dim=hidden_dim,
min_chunk_size_m=min_chunk_size_m,
gpu_margin_mem_ratio=gpu_margin_mem_ratio,
initial_scale=initial_scale,
growth_factor=growth_factor,
backoff_factor=backoff_factor,
growth_interval=growth_interval,
hysteresis=hysteresis,
min_scale=min_scale,
max_scale=max_scale,
max_norm=max_norm,
norm_type=norm_type,
)
super().__init__(seed, plugin_initializer)
def _post_init(self) -> None:
assert isinstance(self.plugin, GeminiPlugin), f"{type(self).__name__}'s plugin is not initialized properly."
def setup_distributed(self) -> None:
colossalai.launch_from_torch({}, seed=self.seed)
def model_init_context(self):
return super().model_init_context()
def unwrap_model(self, model: nn.Module) -> nn.Module:
assert isinstance(model, GeminiDDP)
return model.module

View File

@ -1,136 +0,0 @@
import os
import random
from collections import OrderedDict
from typing import Callable, Optional
import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
from coati.experience_buffer import ExperienceBuffer
from coati.models import Actor, Critic, RewardModel
from torch.utils.data import DataLoader
from transformers.modeling_utils import PreTrainedModel
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from colossalai.booster.plugin import TorchDDPPlugin
from colossalai.booster.plugin.torch_ddp_plugin import TorchDDPModel
from .base import Strategy
from .sampler import DistributedSampler
# TODO Move this to a util.py (Moving to ray.util introduces ringed import)
def get_grad_required_state_dict(model: nn.Module):
state_dict = OrderedDict()
for name, parameter in model.named_parameters():
if parameter.requires_grad:
state_dict[name] = parameter.detach()
return state_dict
class DDPStrategy(Strategy):
"""
Strategy for distributed training using torch.distributed.
"""
def __init__(self, seed: int = 42, plugin_initializer: Callable = TorchDDPPlugin) -> None:
self.seed = seed
super().__init__(plugin_initializer)
def _try_init_dist(self, force: bool = False) -> None:
try:
rank = int(os.environ["RANK"])
local_rank = int(os.environ["LOCAL_RANK"])
world_size = int(os.environ["WORLD_SIZE"])
host = os.environ["MASTER_ADDR"]
port = int(os.environ["MASTER_PORT"])
dist.init_process_group("nccl", init_method=f"tcp://[{host}]:{port}", world_size=world_size, rank=rank)
torch.cuda.set_device(local_rank)
except KeyError as e:
if force:
raise RuntimeError(
f"Could not find {e} in the torch environment, visit https://www.colossalai.org/ for more information on launching with torch"
)
except Exception as e:
if force:
raise e
def _post_init(self) -> None:
assert isinstance(self.plugin, TorchDDPPlugin), f"{type(self).__name__}'s plugin is not initialized properly."
def setup_distributed(self) -> None:
self._try_init_dist(force=True)
self.set_seed(self.seed)
def set_seed(self, seed: int) -> None:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
def setup_dataloader(self, data_buffer: ExperienceBuffer, pin_memory: bool = False) -> DataLoader:
return self.plugin.prepare_dataloader(
data_buffer,
batch_size=data_buffer.sample_batch_size,
shuffle=True,
drop_last=True,
pin_memory=pin_memory,
collate_fn=data_buffer.collate_fn,
)
def setup_sampler(self, dataset) -> DistributedSampler:
# FIXME(cwher): this is only invoked in train_on_ray, not tested after adapt Boost API.
return DistributedSampler(dataset, dist.get_world_size(), dist.get_rank())
def unwrap_model(self, model: nn.Module) -> nn.Module:
assert isinstance(model, TorchDDPModel), "model is not wrapped by TorchDDPModel."
return model.unwrap()
def save_pretrained(
self, model: nn.Module, path: str, shard: bool = False, tokenizer: Optional[PreTrainedTokenizerBase] = None
) -> None:
if dist.get_rank() == 0:
unwrapped_model = self.unwrap_model(model)
assert isinstance(unwrapped_model, (Actor, Critic, RewardModel))
pretrained_model = unwrapped_model.model
assert isinstance(pretrained_model, PreTrainedModel)
# HACK: only use hf save_pretrained to save config
pretrained_model.save_pretrained(path, save_function=lambda *args, **kwargs: None)
if tokenizer is not None:
tokenizer.save_pretrained(path)
model_path = os.path.join(path, "pytorch_model.bin")
self.save_model(model, model_path, shard=shard)
def _replace_keys(model_path: str, replace_fn: Callable):
state_dict = torch.load(model_path, map_location="cpu")
state_dict = {replace_fn(k): v for k, v in state_dict.items()}
torch.save(state_dict, model_path)
# FIXME: save_model would add "model." prefix to keys of pytorch_model.bin
# HACK: rename keys of pytorch_model.bin
if dist.get_rank() == 0:
_replace_keys(model_path, lambda k: k.replace("model.", "", 1))
def get_model_state_dict_shard(self, model: nn.Module, **config):
# TODO: implement sharding on naive strategy
model = self.unwrap_model(model)
if "requires_grad_only" in config and config["requires_grad_only"] == True:
state_dict = get_grad_required_state_dict(model)
else:
state_dict = model.state_dict()
if "shard_size" in config:
shard_size = config["shard_size"]
accumulate_size = 0
state_dict_shard = OrderedDict()
for name, param in state_dict.items():
state_dict_shard[name] = param
accumulate_size += param.numel() * param.element_size()
if accumulate_size >= shard_size:
accumulate_size = 0
yield state_dict_shard
state_dict_shard = OrderedDict()
if accumulate_size > 0:
yield state_dict_shard
else:
yield state_dict

View File

@ -1,31 +0,0 @@
import math
import numpy as np
class DistributedSampler:
def __init__(self, dataset, num_replicas: int, rank: int) -> None:
self.dataset = dataset
self.num_replicas = num_replicas
self.rank = rank
if len(self.dataset) % self.num_replicas != 0:
self.num_samples = math.ceil(
(len(self.dataset) - self.num_replicas) / self.num_replicas # type: ignore[arg-type]
)
else:
self.num_samples = math.ceil(len(self.dataset) / self.num_replicas)
self.total_size = self.num_samples * self.num_replicas
indices = list(range(len(self.dataset)))
indices = indices[: self.total_size]
assert len(indices) == self.total_size
# subsample
indices = indices[self.rank : self.total_size : self.num_replicas]
assert len(indices) == self.num_samples
self.indices = indices
def sample(self, batch_size: int) -> list:
sampled_indices = np.random.choice(self.indices, batch_size, replace=False)
return [self.dataset[idx] for idx in sampled_indices]

View File

@ -1,50 +0,0 @@
from typing import Any
import torch
import torch.distributed as dist
from torch.utils._pytree import tree_map
from torch.utils.data import DataLoader
class CycledDataLoader:
"""
Why do we need this class?
In version 4da324cd60, "prompts = next(iter(self.prompt_dataloader))" is used to sample a batch of prompts/pretrain.
However, this may be inefficient due to frequent re-initialization of the dataloader. (re-initialize workers...)
NOTE: next(iter(dataloader)) is not equivalent to for batch in dataloader: break, it causes slightly different behavior.
"""
def __init__(
self,
dataloader: DataLoader,
) -> None:
self.dataloader = dataloader
self.count = 0
self.dataloader_iter = None
def next(self):
# defer initialization
if self.dataloader_iter is None:
self.dataloader_iter = iter(self.dataloader)
self.count += 1
try:
return next(self.dataloader_iter)
except StopIteration:
self.count = 0
self.dataloader_iter = iter(self.dataloader)
return next(self.dataloader_iter)
def is_rank_0() -> bool:
return not dist.is_initialized() or dist.get_rank() == 0
def to_device(x: Any, device: torch.device) -> Any:
def _to(t: Any):
if isinstance(t, torch.Tensor):
return t.to(device)
return t
return tree_map(_to, x)

View File

@ -1,409 +0,0 @@
# Examples
## Table of Contents
- [Examples](#examples)
- [Table of Contents](#table-of-contents)
- [Install requirements](#install-requirements)
- [Supervised datasets collection](#supervised-datasets-collection)
- [Conversation dataset generation](#conversation-dataset-generation)
- [Stage1 - Supervised instructs tuning](#stage1---supervised-instructs-tuning)
- [Arg List](#arg-list)
- [Stage2 - Training reward model](#stage2---training-reward-model)
- [Features and tricks in RM training](#features-and-tricks-in-rm-training)
- [Experiment result](#experiment-result)
- [Arg List](#arg-list-1)
- [Stage3 - Training model using prompts with RL](#stage3---training-model-using-prompts-with-rl)
- [Arg List](#arg-list-2)
- [Inference example - After Stage3](#inference-example---after-stage3)
- [Attention](#attention)
- [data](#data)
- [Support Model](#support-model)
- [GPT](#gpt)
- [BLOOM](#bloom)
- [OPT](#opt)
- [LLaMA](#llama)
- [Add your own models](#add-your-own-models)
- [Actor model](#actor-model)
- [Reward model](#reward-model)
- [Critic model](#critic-model)
---
## Install requirements
```shell
pip install -r requirements.txt
```
## Supervised datasets collection
We collected 104K bilingual datasets of Chinese and English, and you can find the datasets in this repo
[InstructionWild](https://github.com/XueFuzhao/InstructionWild) and in this [file](https://github.com/XueFuzhao/InstructionWild/blob/main/data/README.md).
Here is how we collected the data
<p align="center">
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/applications/chat/data-collect.png" width=500/>
</p>
### Conversation dataset generation
In order to further improve the model's ability to handle multi-turn conversations, we need to include samples with multi-turn conversations in the dataset. However, the samples in InstructWild and Alpaca datasets currently consist of only single-turn conversations, and their dataset organization is not suitable for storing multi-turn conversations. Additionally, after converting the aforementioned datasets, we also need to include multi-turn conversation datasets like ShareGPT, and we should transform them into the training format supported by ColossalChat.
A sample of conversation dataset should have the following fields:
- `type` (str, optional): The type of the data sample.
- `language` (str, optional): The language of the data sample.
- `dataset` (str, optional): The dataset the data sample originates from.
- `conversations` (str, compulsory): Conversation content of the data sample.
- `id` (int, optional): The ID of the data sample.
A simple example:
```json
{
"type": "instruction",
"language": "English",
"dataset": "Alpaca",
"conversations": [
{
"from": "human",
"value": "Give three tips for staying healthy."
},
{
"from": "gpt",
"value": "1.Eat a balanced diet and make sure to include plenty of fruits and vegetables. \n2. Exercise regularly to keep your body active and strong. \n3. Get enough sleep and maintain a consistent sleep schedule."
}
],
"id": 1
}
```
> **NOTE:** Only key `conversations` is compulsary for training and other keys serve as metadata. The length of `conversations` varies.
You can run the `examples/generate_conversation_dataset.py` to generate a conversation dataset supported by ColossalChat.
You can use the following cmd to generate conversation dataset.
```bash
python generate_conversation_dataset.py \
--dataset "All"
--save_path "/path/to/dataset"
```
## Stage1 - Supervised instructs tuning
Stage1 is supervised instructs fine-tuning, which uses the datasets mentioned earlier to fine-tune the model.
[[Stage1 tutorial video]](https://www.youtube.com/watch?v=-qFBZFmOJfg)
You can run the `examples/train_sft.sh` to start a supervised instructs fine-tuning.
You can also use the following cmd to start a supervised instructs fine-tuning with your own settings.
```bash
torchrun --standalone --nproc_per_node=4 train_sft.py \
--pretrain "/path/to/LLaMa-7B/" \
--model 'llama' \
--strategy colossalai_zero2 \
--save_path /path/to/Coati-7B \
--dataset /path/to/data.json \
--batch_size 4 \
--accumulation_steps 8 \
--lr 2e-5 \
--max_datasets_size 512 \
--max_epochs 1 \
--grad_checkpoint
```
**Note**: the supervised dataset follows the following format,
```json
[
{
"instruction": "Provide a list of the top 10 most popular mobile games in Asia",
"input": "",
"output": "The top 10 most popular mobile games in Asia are:\n1) PUBG Mobile\n2) Pokemon Go\n3) Candy Crush Saga\n4) Free Fire\n5) Clash of Clans\n6) Mario Kart Tour\n7) Arena of Valor\n8) Fantasy Westward Journey\n9) Subway Surfers\n10) ARK Survival Evolved",
"id": 0
},
...
]
```
### Arg List
- `--strategy`: the strategy using for training, choices=['ddp', 'colossalai_gemini', 'colossalai_zero2'], default='colossalai_zero2'
- `--model`: model type, choices=['gpt2', 'bloom', 'opt', 'llama'], default='bloom'
- `--pretrain`: pretrain model, type=str, default=None
- `--max_datasets_size`: the max size of dataset, type=int, default=None
- `--save_path`: path to save the model, type=str, default='output'
- `--need_optim_ckpt`: whether to save optim ckpt, type=bool, default=False
- `--max_epochs`: max epochs for training, type=int, default=3
- `--batch_size`: batch size while training, type=int, default=4
- `--lora_rank`: low-rank adaptation matrices rank, type=int, default=0
- `--grad_checkpoint`: enable gradient checkpointing, type=bool, default=False
## Stage2 - Training reward model
We train a reward model in stage 2, which obtains corresponding scores by manually ranking different outputs for the same prompt and supervises the training of the reward model.
[[Stage2 tutorial video]](https://www.youtube.com/watch?v=gMx2CApKhuo)
You can run the `examples/train_rm.sh` to start a reward model training.
You can also use the following cmd to start training a reward model.
```bash
torchrun --standalone --nproc_per_node=4 train_reward_model.py \
--pretrain "/path/to/LLaMa-7B/" \
--model 'llama' \
--strategy colossalai_zero2 \
--loss_fn 'log_exp'\
--save_path 'rmstatic.pt' \
```
### Features and tricks in RM training
- We support [Anthropic/hh-rlhf](https://huggingface.co/datasets/Anthropic/hh-rlhf)and[rm-static](https://huggingface.co/datasets/Dahoas/rm-static) datasets.
- We support 2 kinds of loss function named `log_sig`(used by OpenAI) and `log_exp`(used by Anthropic).
- We change the loss to `valid_acc` and `pair_dist` to monitor progress during training.
- We add special token to the end of the sequence to get better result.
- We use cosine-reducing lr-scheduler for RM training.
- We set value_head as 1 liner layer and initialize the weight of value_head using N(01/(d_model + 1)) distribution.
- We train a Bloom-560m reward model for 1 epoch and find the test acc of the model achieve the performance mentions in [Anthropics paper](https://arxiv.org/abs/2204.05862).
### Experiment result
Model performance in [Anthropics paper](https://arxiv.org/abs/2204.05862):
<div align=middle> <img width="512" alt="image" src="https://user-images.githubusercontent.com/70618399/225263321-8d64c3a8-6877-4cc8-9b61-0e1c52d3d94f.png">
<div align=left>Our training & test result of bloom-560m for 1 epoch:
<div align=middle> <img width="512" alt="image" src="https://user-images.githubusercontent.com/70618399/225262950-a7f0a686-25de-44ec-98f2-11b83ea86674.png">
<div align=left>We also train the reward model based on LLaMA-7B, which reaches the ACC of 72.06% after 1 epoch, performing almost the same as Anthropic's best RM.
### Arg List
- `--strategy`: the strategy using for training, choices=['ddp', 'colossalai_gemini', 'colossalai_zero2'], default='colossalai_zero2'
- `--model`: model type, choices=['gpt2', 'bloom', 'opt', 'llama'], default='bloom'
- `--pretrain`: pretrain model, type=str, default=None
- `--model_path`: the path of rm model(if continue to train), type=str, default=None
- `--save_path`: path to save the model, type=str, default='output'
- `--need_optim_ckpt`: whether to save optim ckpt, type=bool, default=False
- `--max_epochs`: max epochs for training, type=int, default=3
- `--dataset`: dataset name, type=str, choices=['Anthropic/hh-rlhf', 'Dahoas/rm-static']
- `--subset`: subset of the dataset, type=str, default=None
- `--batch_size`: batch size while training, type=int, default=4
- `--lora_rank`: low-rank adaptation matrices rank, type=int, default=0
- `--loss_func`: which kind of loss function, choices=['log_sig', 'log_exp']
- `--max_len`: max sentence length for generation, type=int, default=512
## Stage3 - Training model using prompts with RL
Stage3 uses reinforcement learning algorithm, which is the most complex part of the training process, as shown below:
<p align="center">
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/applications/chat/stage-3.jpeg" width=800/>
</p>
You can run the `examples/train_prompts.sh` to start PPO training.
You can also use the cmd following to start PPO training.
[[Stage3 tutorial video]](https://www.youtube.com/watch?v=Z8wwSHxPL9g)
```bash
torchrun --standalone --nproc_per_node=4 train_prompts.py \
--pretrain "/path/to/LLaMa-7B/" \
--model 'llama' \
--strategy colossalai_zero2 \
--prompt_dataset /path/to/your/prompt_dataset \
--pretrain_dataset /path/to/your/pretrain_dataset \
--rm_pretrain /your/pretrain/rm/definition \
--rm_path /your/rm/model/path
```
Prompt dataset: the instruction dataset mentioned in the above figure which includes the instructions, e.g. you can use the [script](https://github.com/hpcaitech/ColossalAI/tree/main/applications/Chat/examples/generate_prompt_dataset.py) which samples `instinwild_en.json` or `instinwild_ch.json` in [InstructionWild](https://github.com/XueFuzhao/InstructionWild/tree/main/data#instructwild-data) to generate the prompt dataset.
Pretrain dataset: the pretrain dataset including the instruction and corresponding response, e.g. you can use the [InstructWild Data](https://github.com/XueFuzhao/InstructionWild/tree/main/data) in stage 1 supervised instructs tuning.
**Note**: the required datasets follow the following format,
- `pretrain dataset`
```json
[
{
"instruction": "Provide a list of the top 10 most popular mobile games in Asia",
"input": "",
"output": "The top 10 most popular mobile games in Asia are:\n1) PUBG Mobile\n2) Pokemon Go\n3) Candy Crush Saga\n4) Free Fire\n5) Clash of Clans\n6) Mario Kart Tour\n7) Arena of Valor\n8) Fantasy Westward Journey\n9) Subway Surfers\n10) ARK Survival Evolved",
"id": 0
},
...
]
```
- `prompt dataset`
```json
[
{
"instruction": "Edit this paragraph to make it more concise: \"Yesterday, I went to the store and bought some things. Then, I came home and put them away. After that, I went for a walk and met some friends.\"",
"id": 0
},
{
"instruction": "Write a descriptive paragraph about a memorable vacation you went on",
"id": 1
},
...
]
```
### Arg List
- `--strategy`: the strategy using for training, choices=['ddp', 'colossalai_gemini', 'colossalai_zero2'], default='colossalai_zero2'
- `--model`: model type of actor, choices=['gpt2', 'bloom', 'opt', 'llama'], default='bloom'
- `--pretrain`: pretrain model, type=str, default=None
- `--rm_model`: reward model type, type=str, choices=['gpt2', 'bloom', 'opt', 'llama'], default=None
- `--rm_pretrain`: pretrain model for reward model, type=str, default=None
- `--rm_path`: the path of rm model, type=str, default=None
- `--save_path`: path to save the model, type=str, default='output'
- `--prompt_dataset`: path of the prompt dataset, type=str, default=None
- `--pretrain_dataset`: path of the ptx dataset, type=str, default=None
- `--need_optim_ckpt`: whether to save optim ckpt, type=bool, default=False
- `--num_episodes`: num of episodes for training, type=int, default=10
- `--num_update_steps`: number of steps to update policy per episode, type=int
- `--num_collect_steps`: number of steps to collect experience per episode, type=int
- `--train_batch_size`: batch size while training, type=int, default=8
- `--ptx_batch_size`: batch size to compute ptx loss, type=int, default=1
- `--experience_batch_size`: batch size to make experience, type=int, default=8
- `--lora_rank`: low-rank adaptation matrices rank, type=int, default=0
- `--kl_coef`: kl_coef using for computing reward, type=float, default=0.1
- `--ptx_coef`: ptx_coef using for computing policy loss, type=float, default=0.9
## Inference example - After Stage3
We support different inference options, including int8 and int4 quantization.
For details, see [`inference/`](https://github.com/hpcaitech/ColossalAI/tree/main/applications/Chat/inference).
## Attention
The examples are demos for the whole training process.You need to change the hyper-parameters to reach great performance.
#### data
- [x] [rm-static](https://huggingface.co/datasets/Dahoas/rm-static)
- [x] [hh-rlhf](https://huggingface.co/datasets/Anthropic/hh-rlhf)
- [ ] [openai/summarize_from_feedback](https://huggingface.co/datasets/openai/summarize_from_feedback)
- [ ] [openai/webgpt_comparisons](https://huggingface.co/datasets/openai/webgpt_comparisons)
- [ ] [Dahoas/instruct-synthetic-prompt-responses](https://huggingface.co/datasets/Dahoas/instruct-synthetic-prompt-responses)
## Support Model
### GPT
- [x] GPT2-S (s)
- [x] GPT2-M (m)
- [x] GPT2-L (l)
- [x] GPT2-XL (xl)
- [x] GPT2-4B (4b)
- [ ] GPT2-6B (6b)
### BLOOM
- [x] [BLOOM-560m](https://huggingface.co/bigscience/bloom-560m)
- [x] [BLOOM-1b1](https://huggingface.co/bigscience/bloom-1b1)
- [x] [BLOOM-3b](https://huggingface.co/bigscience/bloom-3b)
- [x] [BLOOM-7b](https://huggingface.co/bigscience/bloom-7b1)
- [ ] [BLOOM-175b](https://huggingface.co/bigscience/bloom)
### OPT
- [x] [OPT-125M](https://huggingface.co/facebook/opt-125m)
- [x] [OPT-350M](https://huggingface.co/facebook/opt-350m)
- [x] [OPT-1.3B](https://huggingface.co/facebook/opt-1.3b)
- [x] [OPT-2.7B](https://huggingface.co/facebook/opt-2.7b)
- [x] [OPT-6.7B](https://huggingface.co/facebook/opt-6.7b)
- [ ] [OPT-13B](https://huggingface.co/facebook/opt-13b)
- [ ] [OPT-30B](https://huggingface.co/facebook/opt-30b)
### [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md)
- [x] LLaMA-7B
- [x] LLaMA-13B
- [ ] LLaMA-33B
- [ ] LLaMA-65B
## Add your own models
If you want to support your own model in Coati, please refer the pull request for RoBERTa support as an example --[[chatgpt] add pre-trained model RoBERTa for RLHF stage 2 & 3](https://github.com/hpcaitech/ColossalAI/pull/3223), and submit a PR to us.
You should complete the implementation of four model classes, including Reward model, Critic model, LM model, Actor model
here are some example code for a NewModel named `Coati`.
if it is supported in huggingface [transformers](https://github.com/huggingface/transformers), you can load it by `from_pretrained`, o
r you can build your own model by yourself.
### Actor model
```python
from ..base import Actor
from transformers.models.coati import CoatiModel
class CoatiActor(Actor):
def __init__(self,
pretrained: Optional[str] = None,
checkpoint: bool = False,
lora_rank: int = 0,
lora_train_bias: str = 'none') -> None:
if pretrained is not None:
model = CoatiModel.from_pretrained(pretrained)
else:
model = build_model() # load your own model if it is not support in transformers
super().__init__(model, lora_rank, lora_train_bias)
```
### Reward model
```python
from ..base import RewardModel
from transformers.models.coati import CoatiModel
class CoatiRM(RewardModel):
def __init__(self,
pretrained: Optional[str] = None,
checkpoint: bool = False,
lora_rank: int = 0,
lora_train_bias: str = 'none') -> None:
if pretrained is not None:
model = CoatiModel.from_pretrained(pretrained)
else:
model = build_model() # load your own model if it is not support in transformers
value_head = nn.Linear(model.config.n_embd, 1)
value_head.weight.data.normal_(mean=0.0, std=1 / (model.config.n_embd + 1))
super().__init__(model, value_head, lora_rank, lora_train_bias)
```
### Critic model
```python
from ..base import Critic
from transformers.models.coati import CoatiModel
class CoatiCritic(Critic):
def __init__(self,
pretrained: Optional[str] = None,
checkpoint: bool = False,
lora_rank: int = 0,
lora_train_bias: str = 'none') -> None:
if pretrained is not None:
model = CoatiModel.from_pretrained(pretrained)
else:
model = build_model() # load your own model if it is not support in transformers
value_head = nn.Linear(model.config.n_embd, 1)
value_head.weight.data.normal_(mean=0.0, std=1 / (model.config.n_embd + 1))
super().__init__(model, value_head, lora_rank, lora_train_bias)
```

View File

@ -1,79 +0,0 @@
import argparse
import dataclasses
import os
import parser
from typing import List
import tqdm
from coati.models.bloom import BLOOMRM, BLOOMActor, BLOOMCritic
from coati.models.gpt import GPTRM, GPTActor, GPTCritic
from coati.models.opt import OPTRM, OPTActor, OPTCritic
from huggingface_hub import hf_hub_download, snapshot_download
from transformers import AutoConfig, AutoTokenizer, BloomConfig, BloomTokenizerFast, GPT2Config, GPT2Tokenizer
@dataclasses.dataclass
class HFRepoFiles:
repo_id: str
files: List[str]
def download(self, dir_path: str):
for file in self.files:
file_path = hf_hub_download(self.repo_id, file, local_dir=dir_path)
def download_all(self):
snapshot_download(self.repo_id)
def test_init(model: str, dir_path: str):
if model == "gpt2":
config = GPT2Config.from_pretrained(dir_path)
actor = GPTActor(config=config)
critic = GPTCritic(config=config)
reward_model = GPTRM(config=config)
GPT2Tokenizer.from_pretrained(dir_path)
elif model == "bloom":
config = BloomConfig.from_pretrained(dir_path)
actor = BLOOMActor(config=config)
critic = BLOOMCritic(config=config)
reward_model = BLOOMRM(config=config)
BloomTokenizerFast.from_pretrained(dir_path)
elif model == "opt":
config = AutoConfig.from_pretrained(dir_path)
actor = OPTActor(config=config)
critic = OPTCritic(config=config)
reward_model = OPTRM(config=config)
AutoTokenizer.from_pretrained(dir_path)
else:
raise NotImplementedError(f"Model {model} not implemented")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-dir", type=str, default="test_models")
parser.add_argument("--config-only", default=False, action="store_true")
args = parser.parse_args()
if os.path.exists(args.model_dir):
print(f"[INFO]: {args.model_dir} already exists")
exit(0)
repo_list = {
"gpt2": HFRepoFiles(repo_id="gpt2", files=["config.json", "tokenizer.json", "vocab.json", "merges.txt"]),
"bloom": HFRepoFiles(
repo_id="bigscience/bloom-560m", files=["config.json", "tokenizer.json", "tokenizer_config.json"]
),
"opt": HFRepoFiles(
repo_id="facebook/opt-350m", files=["config.json", "tokenizer_config.json", "vocab.json", "merges.txt"]
),
}
os.mkdir(args.model_dir)
for model_name in tqdm.tqdm(repo_list):
dir_path = os.path.join(args.model_dir, model_name)
if args.config_only:
os.mkdir(dir_path)
repo_list[model_name].download(dir_path)
else:
repo_list[model_name].download_all()
test_init(model_name, dir_path)

View File

@ -1,82 +0,0 @@
import argparse
import json
from datasets import load_dataset
def generate_alpaca():
# We can convert dataset with the same format("instruction", "input", "output") as Alpaca into a one-round conversation.
conversation_dataset = []
dataset = load_dataset("tatsu-lab/alpaca", split="train")
instructions = dataset["instruction"]
inputs = dataset["input"]
outputs = dataset["output"]
assert len(instructions) == len(inputs) == len(outputs)
for idx in range(len(instructions)):
human_utterance = instructions[idx] + "\n\n" + inputs[idx] if inputs[idx] else instructions[idx]
human = {"from": "human", "value": human_utterance}
gpt_utterance = outputs[idx]
gpt = {"from": "gpt", "value": gpt_utterance}
conversation = dict(type="instruction", language="English", dataset="Alpaca", conversations=[human, gpt])
conversation_dataset.append(conversation)
return conversation_dataset
def generate_sharegpt():
# ShareGPT data requires less processing.
conversation_dataset = []
dataset = load_dataset(
"anon8231489123/ShareGPT_Vicuna_unfiltered",
data_files="ShareGPT_V3_unfiltered_cleaned_split_no_imsorry.json",
split="train",
)
conversations = dataset["conversations"]
for idx in range(len(conversations)):
for conv in conversations[idx]:
# We don't need markdown and text value.
del conv["markdown"]
del conv["text"]
conversation = dict(
type="conversation", language="Multilingual", dataset="ShareGPT", conversations=conversations[idx]
)
conversation_dataset.append(conversation)
return conversation_dataset
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--dataset",
type=str,
default="All",
choices=["Alpaca", "ShareGPT", "All"],
help="which dataset to convert, All will combine Alpaca and ShareGPT",
)
parser.add_argument("--save_path", type=str, default="dataset.json", help="path to save the converted dataset")
args = parser.parse_args()
conversation_dataset = []
if args.dataset == "Alpaca":
conversation_dataset.extend(generate_alpaca())
elif args.dataset == "ShareGPT":
conversation_dataset.extend(generate_sharegpt())
else:
conversation_dataset.extend(generate_alpaca())
conversation_dataset.extend(generate_sharegpt())
for idx, sample in enumerate(conversation_dataset):
sample["id"] = idx + 1
with open(args.save_path, mode="w") as f:
json.dump(conversation_dataset, f, indent=4, default=str, ensure_ascii=False)

View File

@ -1,27 +0,0 @@
import argparse
import json
import random
random.seed(42)
def sample(args):
with open(args.dataset_path, mode="r") as f:
dataset_list = json.load(f)
sampled_dataset = [
{"instruction": sample["instruction"], "id": idx}
for idx, sample in enumerate(random.sample(dataset_list, args.sample_size))
]
with open(args.save_path, mode="w") as f:
json.dump(sampled_dataset, f, indent=4, default=str, ensure_ascii=False)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dataset_path", type=str, default=None, required=True, help="path to the pretrain dataset")
parser.add_argument("--save_path", type=str, default="prompt.json", help="path to save the prompt dataset")
parser.add_argument("--sample_size", type=int, default=16384, help="size of the prompt dataset")
args = parser.parse_args()
sample(args)

View File

@ -1,73 +0,0 @@
import argparse
import torch
from coati.models.bloom import BLOOMActor
from coati.models.generation import generate
from coati.models.gpt import GPTActor
from coati.models.llama import LlamaActor
from coati.models.opt import OPTActor
from transformers import AutoTokenizer, BloomTokenizerFast, GPT2Tokenizer, LlamaTokenizer
def eval(args):
# configure model
if args.model == "gpt2":
actor = GPTActor(pretrained=args.pretrain)
elif args.model == "bloom":
actor = BLOOMActor(pretrained=args.pretrain)
elif args.model == "opt":
actor = OPTActor(pretrained=args.pretrain)
elif args.model == "llama":
actor = LlamaActor(pretrained=args.pretrain)
else:
raise ValueError(f'Unsupported model "{args.model}"')
actor.to(torch.cuda.current_device())
if args.model_path is not None:
state_dict = torch.load(args.model_path)
actor.load_state_dict(state_dict)
# configure tokenizer
if args.model == "gpt2":
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
tokenizer.pad_token = tokenizer.eos_token
elif args.model == "bloom":
tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom-560m")
tokenizer.pad_token = tokenizer.eos_token
elif args.model == "opt":
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
tokenizer.pad_token = tokenizer.eos_token
elif args.model == "llama":
tokenizer = LlamaTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
tokenizer.eos_token = "</s>"
tokenizer.pad_token = tokenizer.unk_token
else:
raise ValueError(f'Unsupported model "{args.model}"')
actor.eval()
tokenizer.padding_side = "left"
input_ids = tokenizer.encode(args.input, return_tensors="pt").to(torch.cuda.current_device())
outputs = generate(
actor,
input_ids,
tokenizer=tokenizer,
max_length=args.max_length,
do_sample=True,
top_k=50,
top_p=0.95,
num_return_sequences=1,
)
output = tokenizer.batch_decode(outputs[0], skip_special_tokens=True)
print(f"[Output]: {''.join(output)}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", default="gpt2", choices=["gpt2", "bloom", "opt", "llama"])
# We suggest to use the pretrained model from HuggingFace, use pretrain to configure model
parser.add_argument("--pretrain", type=str, default=None)
parser.add_argument("--model_path", type=str, default=None)
parser.add_argument("--input", type=str, default="Question: How are you ? Answer:")
parser.add_argument("--max_length", type=int, default=100)
args = parser.parse_args()
eval(args)

View File

@ -1,249 +0,0 @@
import argparse
import warnings
import torch
import torch.distributed as dist
from coati.dataset import PromptDataset, SupervisedDataset
from coati.models.bloom import BLOOMRM, BLOOMActor, BLOOMCritic
from coati.models.gpt import GPTRM, GPTActor, GPTCritic
from coati.models.llama import LlamaActor, LlamaCritic, LlamaRM
from coati.models.opt import OPTRM, OPTActor, OPTCritic
from coati.trainer import PPOTrainer
from coati.trainer.strategies import DDPStrategy, GeminiStrategy, LowLevelZeroStrategy
from torch.optim import Adam
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from transformers import AutoTokenizer, BloomTokenizerFast, GPT2Tokenizer, LlamaTokenizer
from colossalai.nn.optimizer import HybridAdam
def main(args):
# configure strategy
if args.strategy == "ddp":
strategy = DDPStrategy()
elif args.strategy == "colossalai_gemini":
strategy = GeminiStrategy(placement_policy="static", initial_scale=2**5)
elif args.strategy == "colossalai_zero2":
strategy = LowLevelZeroStrategy(stage=2, placement_policy="cuda")
else:
raise ValueError(f'Unsupported strategy "{args.strategy}"')
if args.rm_path is not None:
warnings.warn("LoRA weights should be merged with the model weights")
state_dict = torch.load(args.rm_path, map_location="cpu")
if args.lora_rank > 0:
warnings.warn("Lora is not supported yet.")
args.lora_rank = 0
with strategy.model_init_context():
# configure model
if args.model == "gpt2":
initial_model = GPTActor(pretrained=args.pretrain)
elif args.model == "bloom":
initial_model = BLOOMActor(pretrained=args.pretrain)
elif args.model == "opt":
initial_model = OPTActor(pretrained=args.pretrain)
elif args.model == "llama":
initial_model = LlamaActor(pretrained=args.pretrain)
else:
raise ValueError(f'Unsupported actor model "{args.model}"')
if args.rm_model is None:
rm_model_name = args.model
else:
rm_model_name = args.rm_model
if rm_model_name == "gpt2":
reward_model = GPTRM(pretrained=args.rm_pretrain, lora_rank=args.lora_rank)
elif rm_model_name == "bloom":
reward_model = BLOOMRM(pretrained=args.rm_pretrain, lora_rank=args.lora_rank)
elif rm_model_name == "opt":
reward_model = OPTRM(pretrained=args.rm_pretrain, lora_rank=args.lora_rank)
elif rm_model_name == "llama":
reward_model = LlamaRM(pretrained=args.rm_pretrain, lora_rank=args.lora_rank)
else:
raise ValueError(f'Unsupported reward model "{rm_model_name}"')
if args.rm_path is not None:
reward_model.load_state_dict(state_dict, strict=False)
initial_model.to(torch.bfloat16).to(torch.cuda.current_device())
reward_model.to(torch.bfloat16).to(torch.cuda.current_device())
if args.model == "gpt2":
actor = GPTActor(pretrained=args.pretrain, lora_rank=args.lora_rank)
elif args.model == "bloom":
actor = BLOOMActor(pretrained=args.pretrain, lora_rank=args.lora_rank)
elif args.model == "opt":
actor = OPTActor(pretrained=args.pretrain, lora_rank=args.lora_rank)
elif args.model == "llama":
actor = LlamaActor(pretrained=args.pretrain, lora_rank=args.lora_rank)
else:
raise ValueError(f'Unsupported actor model "{args.model}"')
if rm_model_name == "gpt2":
critic = GPTCritic(pretrained=args.rm_pretrain, lora_rank=args.lora_rank)
elif rm_model_name == "bloom":
critic = BLOOMCritic(pretrained=args.rm_pretrain, lora_rank=args.lora_rank)
elif rm_model_name == "opt":
critic = OPTCritic(pretrained=args.rm_pretrain, lora_rank=args.lora_rank)
elif rm_model_name == "llama":
critic = LlamaCritic(pretrained=args.rm_pretrain, lora_rank=args.lora_rank)
else:
raise ValueError(f'Unsupported reward model "{rm_model_name}"')
if args.rm_path is not None:
critic.load_state_dict(state_dict, strict=False)
del state_dict
actor.to(torch.bfloat16).to(torch.cuda.current_device())
critic.to(torch.bfloat16).to(torch.cuda.current_device())
# configure optimizer
if args.strategy.startswith("colossalai"):
actor_optim = HybridAdam(actor.parameters(), lr=args.lr)
critic_optim = HybridAdam(critic.parameters(), lr=args.lr)
else:
actor_optim = Adam(actor.parameters(), lr=args.lr)
critic_optim = Adam(critic.parameters(), lr=args.lr)
# configure tokenizer
if args.model == "gpt2":
tokenizer = GPT2Tokenizer.from_pretrained("gpt2" if args.tokenizer is None else args.tokenizer)
tokenizer.pad_token = tokenizer.eos_token
elif args.model == "bloom":
tokenizer = BloomTokenizerFast.from_pretrained(
"bigscience/bloom-560m" if args.tokenizer is None else args.tokenizer
)
tokenizer.pad_token = tokenizer.eos_token
elif args.model == "opt":
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m" if args.tokenizer is None else args.tokenizer)
tokenizer.pad_token = tokenizer.eos_token
elif args.model == "llama":
tokenizer = LlamaTokenizer.from_pretrained(
"hf-internal-testing/llama-tokenizer" if args.tokenizer is None else args.tokenizer
)
tokenizer.eos_token = "</s>"
tokenizer.pad_token = tokenizer.unk_token
else:
raise ValueError(f'Unsupported model "{args.model}"')
# NOTE: generate() requires padding_side to be "left"
tokenizer.padding_side = "left"
prompt_dataset = PromptDataset(
tokenizer=tokenizer,
data_path=args.prompt_dataset,
max_datasets_size=args.max_datasets_size,
max_length=args.max_input_len,
)
if dist.is_initialized() and dist.get_world_size() > 1:
prompt_sampler = DistributedSampler(prompt_dataset, shuffle=True, seed=42, drop_last=True)
else:
prompt_sampler = None
prompt_dataloader = DataLoader(
prompt_dataset, shuffle=(prompt_sampler is None), sampler=prompt_sampler, batch_size=args.experience_batch_size
)
pretrain_dataset = SupervisedDataset(
tokenizer=tokenizer,
data_path=args.pretrain_dataset,
max_datasets_size=args.max_datasets_size,
max_length=args.max_input_len,
)
if dist.is_initialized() and dist.get_world_size() > 1:
pretrain_sampler = DistributedSampler(pretrain_dataset, shuffle=True, seed=42, drop_last=True)
else:
pretrain_sampler = None
pretrain_dataloader = DataLoader(
pretrain_dataset, shuffle=(pretrain_sampler is None), sampler=pretrain_sampler, batch_size=args.ptx_batch_size
)
# NOTE: For small models like opt-1.3b, reward model and initial model are not required to be parallelized.
(actor, actor_optim), (critic, critic_optim), reward_model, initial_model = strategy.prepare(
(actor, actor_optim), (critic, critic_optim), reward_model, initial_model
)
# configure trainer
trainer = PPOTrainer(
strategy,
actor,
critic,
reward_model,
initial_model,
actor_optim,
critic_optim,
tokenizer=tokenizer,
kl_coef=args.kl_coef,
ptx_coef=args.ptx_coef,
train_batch_size=args.train_batch_size,
max_length=args.max_seq_len,
use_cache=True,
do_sample=True,
temperature=1.0,
top_k=50,
offload_inference_models=args.strategy != "colossalai_gemini",
)
trainer.fit(
num_episodes=args.num_episodes,
num_collect_steps=args.num_collect_steps,
num_update_steps=args.num_update_steps,
prompt_dataloader=prompt_dataloader,
pretrain_dataloader=pretrain_dataloader,
log_dir=args.log_dir,
use_wandb=args.use_wandb,
)
if args.lora_rank > 0 and args.merge_lora_weights:
from coati.models.lora import LORA_MANAGER
# NOTE: set model to eval to merge LoRA weights
LORA_MANAGER.merge_weights = True
actor.eval()
# save model checkpoint after fitting
strategy.save_pretrained(actor, path=args.save_path)
# save optimizer checkpoint on all ranks
if args.need_optim_ckpt:
strategy.save_optimizer(
actor_optim, "actor_optim_checkpoint_prompts_%d.pt" % (torch.cuda.current_device()), only_rank0=False
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--prompt_dataset", type=str, default=None, help="path to the prompt dataset")
parser.add_argument("--pretrain_dataset", type=str, default=None, help="path to the pretrained dataset")
parser.add_argument("--max_datasets_size", type=int, default=50000)
parser.add_argument(
"--strategy",
choices=["ddp", "colossalai_gemini", "colossalai_zero2"],
default="colossalai_zero2",
help="strategy to use",
)
parser.add_argument("--model", default="gpt2", choices=["gpt2", "bloom", "opt", "llama"])
parser.add_argument("--tokenizer", type=str, default=None)
parser.add_argument("--pretrain", type=str, default=None)
parser.add_argument("--rm_model", default=None, choices=["gpt2", "bloom", "opt", "llama"])
parser.add_argument("--rm_path", type=str, default=None)
parser.add_argument("--rm_pretrain", type=str, default=None)
parser.add_argument("--save_path", type=str, default="actor_checkpoint_prompts")
parser.add_argument("--need_optim_ckpt", type=bool, default=False)
parser.add_argument("--num_episodes", type=int, default=10)
parser.add_argument("--num_collect_steps", type=int, default=10)
parser.add_argument("--num_update_steps", type=int, default=5)
parser.add_argument("--train_batch_size", type=int, default=8)
parser.add_argument("--ptx_batch_size", type=int, default=1)
parser.add_argument("--experience_batch_size", type=int, default=8)
parser.add_argument("--lora_rank", type=int, default=0, help="low-rank adaptation matrices rank")
parser.add_argument("--merge_lora_weights", type=bool, default=True)
parser.add_argument("--lr", type=float, default=1e-7)
parser.add_argument("--kl_coef", type=float, default=0.1)
parser.add_argument("--ptx_coef", type=float, default=0.9)
parser.add_argument("--max_input_len", type=int, default=96)
parser.add_argument("--max_seq_len", type=int, default=128)
parser.add_argument("--log_dir", default="logs", type=str)
parser.add_argument("--use_wandb", default=False, action="store_true")
args = parser.parse_args()
main(args)

View File

@ -1,25 +0,0 @@
set_n_least_used_CUDA_VISIBLE_DEVICES() {
local n=${1:-"9999"}
echo "GPU Memory Usage:"
local FIRST_N_GPU_IDS=$(nvidia-smi --query-gpu=memory.used --format=csv |
tail -n +2 |
nl -v 0 |
tee /dev/tty |
sort -g -k 2 |
awk '{print $1}' |
head -n $n)
export CUDA_VISIBLE_DEVICES=$(echo $FIRST_N_GPU_IDS | sed 's/ /,/g')
echo "Now CUDA_VISIBLE_DEVICES is set to:"
echo "CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES"
}
set_n_least_used_CUDA_VISIBLE_DEVICES 2
# torchrun --standalone --nproc_per_node=2 train_prompts.py prompts.csv --strategy colossalai_zero2
torchrun --standalone --nproc_per_node=2 train_prompts.py \
--pretrain_dataset /path/to/data.json \
--prompt_dataset /path/to/data.json \
--strategy colossalai_zero2 \
--num_episodes 1 --num_collect_steps 2 --num_update_steps 1 \
--train_batch_size 2

View File

@ -1,208 +0,0 @@
import argparse
import warnings
import torch
import torch.distributed as dist
from coati.dataset import HhRlhfDataset, RmStaticDataset
from coati.models import LogExpLoss, LogSigLoss
from coati.models.bloom import BLOOMRM
from coati.models.gpt import GPTRM
from coati.models.llama import LlamaRM
from coati.models.opt import OPTRM
from coati.trainer import RewardModelTrainer
from coati.trainer.strategies import DDPStrategy, GeminiStrategy, LowLevelZeroStrategy
from datasets import load_dataset
from torch.optim import Adam
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from transformers import AutoTokenizer, BloomTokenizerFast, LlamaTokenizer
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
from colossalai.nn.optimizer import HybridAdam
def train(args):
# configure strategy
if args.strategy == "ddp":
strategy = DDPStrategy()
elif args.strategy == "colossalai_gemini":
strategy = GeminiStrategy(placement_policy="auto")
elif args.strategy == "colossalai_zero2":
strategy = LowLevelZeroStrategy(stage=2, placement_policy="cuda")
else:
raise ValueError(f'Unsupported strategy "{args.strategy}"')
# configure model
if args.lora_rank > 0:
warnings.warn("Lora is not supported yet.")
args.lora_rank = 0
with strategy.model_init_context():
if args.model == "bloom":
model = BLOOMRM(pretrained=args.pretrain, lora_rank=args.lora_rank)
elif args.model == "opt":
model = OPTRM(pretrained=args.pretrain, lora_rank=args.lora_rank)
elif args.model == "gpt2":
model = GPTRM(pretrained=args.pretrain, lora_rank=args.lora_rank)
elif args.model == "llama":
model = LlamaRM(pretrained=args.pretrain, lora_rank=args.lora_rank)
else:
raise ValueError(f'Unsupported model "{args.model}"')
model.to(torch.bfloat16).to(torch.cuda.current_device())
if args.model_path is not None:
state_dict = torch.load(args.model_path)
model.load_state_dict(state_dict)
# configure tokenizer
if args.model == "gpt2":
tokenizer = GPT2Tokenizer.from_pretrained("gpt2" if args.tokenizer is None else args.tokenizer)
tokenizer.pad_token = tokenizer.eos_token
elif args.model == "bloom":
tokenizer = BloomTokenizerFast.from_pretrained(
"bigscience/bloom-560m" if args.tokenizer is None else args.tokenizer
)
tokenizer.pad_token = tokenizer.eos_token
elif args.model == "opt":
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m" if args.tokenizer is None else args.tokenizer)
tokenizer.pad_token = tokenizer.eos_token
elif args.model == "llama":
tokenizer = LlamaTokenizer.from_pretrained(
"hf-internal-testing/llama-tokenizer" if args.tokenizer is None else args.tokenizer
)
tokenizer.eos_token = "</s>"
tokenizer.pad_token = tokenizer.unk_token
else:
raise ValueError(f'Unsupported model "{args.model}"')
# configure optimizer
if args.strategy.startswith("colossalai"):
optim = HybridAdam(model.parameters(), lr=args.lr)
else:
optim = Adam(model.parameters(), lr=args.lr)
# configure loss function
if args.loss_fn == "log_sig":
loss_fn = LogSigLoss()
elif args.loss_fn == "log_exp":
loss_fn = LogExpLoss()
else:
raise ValueError(f'Unsupported loss function "{args.loss_fn}"')
# prepare for data and dataset
if args.subset is not None:
data = load_dataset(args.dataset, data_dir=args.subset)
else:
data = load_dataset(args.dataset)
train_data = data["train"].select(range(min(args.max_datasets_size, len(data["train"]))))
eval_data = data["test"].select(range(min(args.max_datasets_size, len(data["test"]))))
if args.dataset == "Dahoas/rm-static":
train_dataset = RmStaticDataset(train_data, tokenizer, args.max_len)
eval_dataset = RmStaticDataset(eval_data, tokenizer, args.max_len)
elif args.dataset == "Anthropic/hh-rlhf":
train_dataset = HhRlhfDataset(train_data, tokenizer, args.max_len)
eval_dataset = HhRlhfDataset(eval_data, tokenizer, args.max_len)
else:
raise ValueError(f'Unsupported dataset "{args.dataset}"')
if dist.is_initialized() and dist.get_world_size() > 1:
train_sampler = DistributedSampler(
train_dataset,
shuffle=True,
seed=42,
drop_last=True,
rank=dist.get_rank(),
num_replicas=dist.get_world_size(),
)
eval_sampler = DistributedSampler(
eval_dataset,
shuffle=True,
seed=42,
drop_last=True,
rank=dist.get_rank(),
num_replicas=dist.get_world_size(),
)
else:
train_sampler = None
eval_sampler = None
train_dataloader = DataLoader(
train_dataset,
shuffle=(train_sampler is None),
sampler=train_sampler,
batch_size=args.batch_size,
pin_memory=True,
)
eval_dataloader = DataLoader(
eval_dataset, shuffle=(eval_sampler is None), sampler=eval_sampler, batch_size=args.batch_size, pin_memory=True
)
lr_scheduler = CosineAnnealingLR(optim, train_dataloader.__len__() // 100)
strategy_dict = strategy.prepare(dict(model=model, optimizer=optim, lr_scheduler=lr_scheduler))
model = strategy_dict["model"]
optim = strategy_dict["optimizer"]
lr_scheduler = strategy_dict["lr_scheduler"]
trainer = RewardModelTrainer(
model=model,
strategy=strategy,
optim=optim,
lr_scheduler=lr_scheduler,
loss_fn=loss_fn,
max_epochs=args.max_epochs,
)
trainer.fit(
train_dataloader=train_dataloader,
eval_dataloader=eval_dataloader,
log_dir=args.log_dir,
use_wandb=args.use_wandb,
)
if args.lora_rank > 0 and args.merge_lora_weights:
from coati.models.lora import LORA_MANAGER
# NOTE: set model to eval to merge LoRA weights
LORA_MANAGER.merge_weights = True
model.eval()
# save model checkpoint after fitting on only rank0
state_dict = model.state_dict()
torch.save(state_dict, args.save_path)
# save optimizer checkpoint on all ranks
if args.need_optim_ckpt:
strategy.save_optimizer(
trainer.optimizer, "rm_optim_checkpoint_%d.pt" % (torch.cuda.current_device()), only_rank0=False
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--strategy", choices=["ddp", "colossalai_gemini", "colossalai_zero2"], default="colossalai_zero2"
)
parser.add_argument("--model", choices=["gpt2", "bloom", "opt", "llama"], default="bloom")
parser.add_argument("--tokenizer", type=str, default=None)
parser.add_argument("--pretrain", type=str, default=None)
parser.add_argument("--model_path", type=str, default=None)
parser.add_argument("--need_optim_ckpt", type=bool, default=False)
parser.add_argument(
"--dataset", type=str, choices=["Anthropic/hh-rlhf", "Dahoas/rm-static"], default="Dahoas/rm-static"
)
parser.add_argument("--subset", type=lambda x: None if x == "None" else x, default=None)
parser.add_argument("--max_datasets_size", type=int, default=1000000)
parser.add_argument("--save_path", type=str, default="rm_ckpt")
parser.add_argument("--max_epochs", type=int, default=1)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--max_len", type=int, default=512)
parser.add_argument("--lora_rank", type=int, default=0, help="low-rank adaptation matrices rank")
parser.add_argument("--merge_lora_weights", type=bool, default=True)
parser.add_argument("--lr", type=float, default=9e-6)
parser.add_argument("--loss_fn", type=str, default="log_sig", choices=["log_sig", "log_exp"])
parser.add_argument("--log_dir", default="logs", type=str)
parser.add_argument("--use_wandb", default=False, action="store_true")
args = parser.parse_args()
train(args)

View File

@ -1,25 +0,0 @@
set_n_least_used_CUDA_VISIBLE_DEVICES() {
local n=${1:-"9999"}
echo "GPU Memory Usage:"
local FIRST_N_GPU_IDS=$(nvidia-smi --query-gpu=memory.used --format=csv |
tail -n +2 |
nl -v 0 |
tee /dev/tty |
sort -g -k 2 |
awk '{print $1}' |
head -n $n)
export CUDA_VISIBLE_DEVICES=$(echo $FIRST_N_GPU_IDS | sed 's/ /,/g')
echo "Now CUDA_VISIBLE_DEVICES is set to:"
echo "CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES"
}
set_n_least_used_CUDA_VISIBLE_DEVICES 2
torchrun --standalone --nproc_per_node=2 train_reward_model.py \
--pretrain 'gpt2' \
--model 'gpt2' \
--strategy colossalai_zero2 \
--loss_fn 'log_exp' \
--dataset 'Anthropic/hh-rlhf' \
--batch_size 16 \
--max_epochs 10

View File

@ -1,221 +0,0 @@
import argparse
import math
import warnings
import torch
import torch.distributed as dist
from coati.dataset import SFTDataset, SupervisedDataset
from coati.models.bloom import BLOOMActor
from coati.models.chatglm import ChatGLMActor
from coati.models.chatglm.chatglm_tokenizer import ChatGLMTokenizer
from coati.models.gpt import GPTActor
from coati.models.llama import LlamaActor
from coati.models.opt import OPTActor
from coati.trainer import SFTTrainer
from coati.trainer.strategies import DDPStrategy, GeminiStrategy, LowLevelZeroStrategy
from datasets import load_dataset
from torch.optim import Adam
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from transformers import AutoTokenizer, BloomTokenizerFast, LlamaTokenizer
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
from transformers.trainer import get_scheduler
from colossalai.logging import get_dist_logger
from colossalai.nn.optimizer import HybridAdam
def train(args):
# configure strategy
if args.strategy == "ddp":
strategy = DDPStrategy()
elif args.strategy == "colossalai_gemini":
strategy = GeminiStrategy(placement_policy="auto")
elif args.strategy == "colossalai_zero2":
strategy = LowLevelZeroStrategy(stage=2, placement_policy="cuda")
elif args.strategy == "colossalai_zero2_cpu":
strategy = LowLevelZeroStrategy(stage=2, placement_policy="cpu")
else:
raise ValueError(f'Unsupported strategy "{args.strategy}"')
# configure model
if args.lora_rank > 0:
warnings.warn("Lora is not supported yet.")
args.lora_rank = 0
with strategy.model_init_context():
if args.model == "bloom":
model = BLOOMActor(pretrained=args.pretrain, lora_rank=args.lora_rank, checkpoint=args.grad_checkpoint)
elif args.model == "opt":
model = OPTActor(pretrained=args.pretrain, lora_rank=args.lora_rank, checkpoint=args.grad_checkpoint)
elif args.model == "gpt2":
model = GPTActor(pretrained=args.pretrain, lora_rank=args.lora_rank, checkpoint=args.grad_checkpoint)
elif args.model == "llama":
model = LlamaActor(pretrained=args.pretrain, lora_rank=args.lora_rank, checkpoint=args.grad_checkpoint)
elif args.model == "chatglm":
model = ChatGLMActor(pretrained=args.pretrain)
else:
raise ValueError(f'Unsupported model "{args.model}"')
model.to(torch.bfloat16).to(torch.cuda.current_device())
# configure tokenizer
if args.model == "gpt2":
tokenizer = GPT2Tokenizer.from_pretrained("gpt2" if args.tokenizer is None else args.tokenizer)
tokenizer.pad_token = tokenizer.eos_token
elif args.model == "bloom":
tokenizer = BloomTokenizerFast.from_pretrained(
"bigscience/bloom-560m" if args.tokenizer is None else args.tokenizer
)
tokenizer.pad_token = tokenizer.eos_token
elif args.model == "opt":
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m" if args.tokenizer is None else args.tokenizer)
tokenizer.pad_token = tokenizer.eos_token
elif args.model == "llama":
tokenizer = LlamaTokenizer.from_pretrained(
"hf-internal-testing/llama-tokenizer" if args.tokenizer is None else args.tokenizer
)
tokenizer.eos_token = "</s>"
tokenizer.pad_token = tokenizer.unk_token
elif args.model == "chatglm":
tokenizer = ChatGLMTokenizer.from_pretrained(
"THUDM/chatglm-6b" if args.tokenizer is None else args.tokenizer, trust_remote_code=True
)
else:
raise ValueError(f'Unsupported model "{args.model}"')
# configure optimizer
if args.strategy.startswith("colossalai"):
optim = HybridAdam(model.parameters(), lr=args.lr, clipping_norm=1.0)
else:
optim = Adam(model.parameters(), lr=args.lr)
# configure dataset
if args.dataset == "yizhongw/self_instruct":
train_data = load_dataset(args.dataset, "super_natural_instructions", split="train")
eval_data = load_dataset(args.dataset, "super_natural_instructions", split="test")
if args.max_datasets_size is not None:
train_data = train_data.select(range(min(args.max_datasets_size, len(train_data))))
eval_data = eval_data.select(range(min(args.max_datasets_size, len(eval_data))))
train_dataset = SFTDataset(train_data, tokenizer, args.max_len)
eval_dataset = SFTDataset(eval_data, tokenizer, args.max_len)
else:
train_dataset = SupervisedDataset(
tokenizer=tokenizer,
data_path=args.dataset,
max_datasets_size=args.max_datasets_size,
max_length=args.max_len,
)
eval_dataset = None
if dist.is_initialized() and dist.get_world_size() > 1:
train_sampler = DistributedSampler(
train_dataset,
shuffle=True,
seed=42,
drop_last=True,
rank=dist.get_rank(),
num_replicas=dist.get_world_size(),
)
if eval_dataset is not None:
eval_sampler = DistributedSampler(
eval_dataset,
shuffle=False,
seed=42,
drop_last=False,
rank=dist.get_rank(),
num_replicas=dist.get_world_size(),
)
else:
train_sampler = None
eval_sampler = None
train_dataloader = DataLoader(
train_dataset,
shuffle=(train_sampler is None),
sampler=train_sampler,
batch_size=args.batch_size,
pin_memory=True,
)
if eval_dataset is not None:
eval_dataloader = DataLoader(
eval_dataset,
shuffle=(eval_sampler is None),
sampler=eval_sampler,
batch_size=args.batch_size,
pin_memory=True,
)
else:
eval_dataloader = None
num_update_steps_per_epoch = len(train_dataloader) // args.accumulation_steps
max_steps = math.ceil(args.max_epochs * num_update_steps_per_epoch)
lr_scheduler = get_scheduler(
"cosine", optim, num_warmup_steps=math.ceil(max_steps * 0.03), num_training_steps=max_steps
)
strategy_dict = strategy.prepare(dict(model=model, optimizer=optim, lr_scheduler=lr_scheduler))
model = strategy_dict["model"]
optim = strategy_dict["optimizer"]
lr_scheduler = strategy_dict["lr_scheduler"]
trainer = SFTTrainer(
model=model,
strategy=strategy,
optim=optim,
lr_scheduler=lr_scheduler,
max_epochs=args.max_epochs,
accumulation_steps=args.accumulation_steps,
)
logger = get_dist_logger()
trainer.fit(
train_dataloader=train_dataloader,
eval_dataloader=eval_dataloader,
logger=logger,
log_dir=args.log_dir,
use_wandb=args.use_wandb,
)
if args.lora_rank > 0 and args.merge_lora_weights:
from coati.models.lora import LORA_MANAGER
# NOTE: set model to eval to merge LoRA weights
LORA_MANAGER.merge_weights = True
model.eval()
# save model checkpoint after fitting on only rank0
strategy.save_pretrained(model, path=args.save_path, tokenizer=tokenizer)
# save optimizer checkpoint on all ranks
if args.need_optim_ckpt:
strategy.save_optimizer(
trainer.optimizer, "rm_optim_checkpoint_%d.pt" % (torch.cuda.current_device()), only_rank0=False
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--strategy",
choices=["ddp", "colossalai_gemini", "colossalai_zero2", "colossalai_zero2_cpu"],
default="colossalai_zero2",
)
parser.add_argument("--model", choices=["gpt2", "bloom", "opt", "llama", "chatglm"], default="bloom")
parser.add_argument("--tokenizer", type=str, default=None)
parser.add_argument("--pretrain", type=str, default=None)
parser.add_argument("--dataset", type=str, default=None)
parser.add_argument("--max_datasets_size", type=int, default=None)
parser.add_argument("--save_path", type=str, default="output")
parser.add_argument("--need_optim_ckpt", type=bool, default=False)
parser.add_argument("--max_epochs", type=int, default=3)
parser.add_argument("--batch_size", type=int, default=4)
parser.add_argument("--max_len", type=int, default=512)
parser.add_argument("--lora_rank", type=int, default=0, help="low-rank adaptation matrices rank")
parser.add_argument("--merge_lora_weights", type=bool, default=True)
parser.add_argument("--lr", type=float, default=5e-6)
parser.add_argument("--accumulation_steps", type=int, default=8)
parser.add_argument("--log_dir", default="logs", type=str)
parser.add_argument("--use_wandb", default=False, action="store_true")
parser.add_argument("--grad_checkpoint", default=False, action="store_true")
args = parser.parse_args()
train(args)

View File

@ -1,28 +0,0 @@
set_n_least_used_CUDA_VISIBLE_DEVICES() {
local n=${1:-"9999"}
echo "GPU Memory Usage:"
local FIRST_N_GPU_IDS=$(nvidia-smi --query-gpu=memory.used --format=csv |
tail -n +2 |
nl -v 0 |
tee /dev/tty |
sort -g -k 2 |
awk '{print $1}' |
head -n $n)
export CUDA_VISIBLE_DEVICES=$(echo $FIRST_N_GPU_IDS | sed 's/ /,/g')
echo "Now CUDA_VISIBLE_DEVICES is set to:"
echo "CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES"
}
set_n_least_used_CUDA_VISIBLE_DEVICES 4
torchrun --standalone --nproc_per_node=4 train_sft.py \
--pretrain "/path/to/LLaMa-7B/" \
--model 'llama' \
--strategy colossalai_zero2 \
--save_path /path/to/Coati-7B \
--dataset /path/to/data.json \
--batch_size 4 \
--accumulation_steps 8 \
--lr 2e-5 \
--max_datasets_size 512 \
--max_epochs 1

View File

@ -1,141 +0,0 @@
# Adapted from https://github.com/tloen/alpaca-lora/blob/main/generate.py
import argparse
from time import time
import torch
from coati.quant import llama_load_quant, low_resource_init
from transformers import AutoTokenizer, GenerationConfig, LlamaConfig, LlamaForCausalLM
def generate_prompt(instruction, input=None):
if input:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Input:
{input}
### Response:"""
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:"""
@torch.no_grad()
def evaluate(
model,
tokenizer,
instruction,
input=None,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=128,
**kwargs,
):
prompt = generate_prompt(instruction, input)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].cuda()
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
do_sample=True,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
n_new_tokens = s.size(0) - input_ids.size(1)
return output.split("### Response:")[1].strip(), n_new_tokens
instructions = [
"Tell me about alpacas.",
"Tell me about the president of Mexico in 2019.",
"Tell me about the king of France in 2019.",
"List all Canadian provinces in alphabetical order.",
"Write a Python program that prints the first 10 Fibonacci numbers.",
"Write a program that prints the numbers from 1 to 100. But for multiples of three print 'Fizz' instead of the number and for the multiples of five print 'Buzz'. For numbers which are multiples of both three and five print 'FizzBuzz'.",
"Tell me five words that rhyme with 'shock'.",
"Translate the sentence 'I have no mouth but I must scream' into Spanish.",
"Count up from 1 to 500.",
# ===
"How to play support in legends of league",
"Write a Python program that calculate Fibonacci numbers.",
]
inst = [instructions[0]] * 4
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"pretrained",
help="Path to pretrained model. Can be a local path or a model name from the HuggingFace model hub.",
)
parser.add_argument(
"--quant",
choices=["8bit", "4bit"],
default=None,
help="Quantization mode. Default: None (no quantization, fp16).",
)
parser.add_argument(
"--gptq_checkpoint",
default=None,
help="Path to GPTQ checkpoint. This is only useful when quantization mode is 4bit. Default: None.",
)
parser.add_argument(
"--gptq_group_size",
type=int,
default=128,
help="Group size for GPTQ. This is only useful when quantization mode is 4bit. Default: 128.",
)
args = parser.parse_args()
if args.quant == "4bit":
assert args.gptq_checkpoint is not None, "Please specify a GPTQ checkpoint."
tokenizer = AutoTokenizer.from_pretrained(args.pretrained)
if args.quant == "4bit":
with low_resource_init():
config = LlamaConfig.from_pretrained(args.pretrained)
model = LlamaForCausalLM(config)
model = llama_load_quant(model, args.gptq_checkpoint, 4, args.gptq_group_size)
model.cuda()
else:
model = LlamaForCausalLM.from_pretrained(
args.pretrained,
load_in_8bit=(args.quant == "8bit"),
torch_dtype=torch.float16,
device_map="auto",
)
if args.quant != "8bit":
model.half() # seems to fix bugs for some users.
model.eval()
total_tokens = 0
start = time()
for instruction in instructions:
print(f"Instruction: {instruction}")
resp, tokens = evaluate(model, tokenizer, instruction, temperature=0.2, num_beams=1)
total_tokens += tokens
print(f"Response: {resp}")
print("\n----------------------------\n")
duration = time() - start
print(f"Total time: {duration:.3f} s, {total_tokens/duration:.3f} tokens/s")
print(f"Peak CUDA mem: {torch.cuda.max_memory_allocated()/1024**3:.3f} GB")

View File

@ -1,61 +0,0 @@
import os
from transformers import AutoTokenizer
from utils import ChatPromptProcessor, Dialogue
CONTEXT = "Below is an instruction that describes a task. Write a response that appropriately completes the request. Do not generate new instructions."
tokenizer = AutoTokenizer.from_pretrained(os.environ["PRETRAINED_PATH"])
samples = [
(
[
Dialogue(
instruction="Who is the best player in the history of NBA?",
response="The best player in the history of the NBA is widely considered to be Michael Jordan. He is one of the most successful players in the league, having won 6 NBA championships with the Chicago Bulls and 5 more with the Washington Wizards. He is a 5-time MVP, 1",
),
Dialogue(instruction="continue this talk", response=""),
],
128,
"Below is an instruction that describes a task. Write a response that appropriately completes the request. Do not generate new instructions.\n\n### Instruction:\nWho is the best player in the history of NBA?\n\n### Response:\nThe best player in the history of the NBA is widely considered to be Michael Jordan. He is one of the most successful players in the league, having won 6 NBA championships with the Chicago Bulls and 5 more with the Washington Wizards. He is a 5-time MVP, 1\n\n### Instruction:\ncontinue this talk\n\n### Response:\n",
),
(
[
Dialogue(
instruction="Who is the best player in the history of NBA?",
response="The best player in the history of the NBA is widely considered to be Michael Jordan. He is one of the most successful players in the league, having won 6 NBA championships with the Chicago Bulls and 5 more with the Washington Wizards. He is a 5-time MVP, 1",
),
Dialogue(instruction="continue this talk", response=""),
],
200,
"Below is an instruction that describes a task. Write a response that appropriately completes the request. Do not generate new instructions.\n\n### Instruction:\ncontinue this talk\n\n### Response:\n",
),
(
[
Dialogue(
instruction="Who is the best player in the history of NBA?",
response="The best player in the history of the NBA is widely considered to be Michael Jordan. He is one of the most successful players in the league, having won 6 NBA championships with the Chicago Bulls and 5 more with the Washington Wizards. He is a 5-time MVP, 1",
),
Dialogue(instruction="continue this talk", response=""),
],
211,
"Below is an instruction that describes a task. Write a response that appropriately completes the request. Do not generate new instructions.\n\n### Instruction:\ncontinue this\n\n### Response:\n",
),
(
[
Dialogue(instruction="Who is the best player in the history of NBA?", response=""),
],
128,
"Below is an instruction that describes a task. Write a response that appropriately completes the request. Do not generate new instructions.\n\n### Instruction:\nWho is the best player in the history of NBA?\n\n### Response:\n",
),
]
def test_chat_prompt_processor():
processor = ChatPromptProcessor(tokenizer, CONTEXT, 256)
for history, max_new_tokens, result in samples:
prompt = processor.preprocess_prompt(history, max_new_tokens)
assert prompt == result
if __name__ == "__main__":
test_chat_prompt_processor()

View File

@ -1,209 +0,0 @@
import json
import re
from threading import Lock
from typing import Any, Callable, Generator, List, Optional
import jieba
import torch
import torch.distributed as dist
import torch.nn as nn
from pydantic import BaseModel, Field
try:
from transformers.generation_logits_process import (
LogitsProcessorList,
TemperatureLogitsWarper,
TopKLogitsWarper,
TopPLogitsWarper,
)
except ImportError:
from transformers.generation import LogitsProcessorList, TemperatureLogitsWarper, TopKLogitsWarper, TopPLogitsWarper
def prepare_logits_processor(
top_k: Optional[int] = None, top_p: Optional[float] = None, temperature: Optional[float] = None
) -> LogitsProcessorList:
processor_list = LogitsProcessorList()
if temperature is not None and temperature != 1.0:
processor_list.append(TemperatureLogitsWarper(temperature))
if top_k is not None and top_k != 0:
processor_list.append(TopKLogitsWarper(top_k))
if top_p is not None and top_p < 1.0:
processor_list.append(TopPLogitsWarper(top_p))
return processor_list
def _is_sequence_finished(unfinished_sequences: torch.Tensor) -> bool:
if dist.is_initialized() and dist.get_world_size() > 1:
# consider DP
unfinished_sequences = unfinished_sequences.clone()
dist.all_reduce(unfinished_sequences)
return unfinished_sequences.max() == 0
def sample_streamingly(
model: nn.Module,
input_ids: torch.Tensor,
max_generate_tokens: int,
early_stopping: bool = False,
eos_token_id: Optional[int] = None,
pad_token_id: Optional[int] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
temperature: Optional[float] = None,
prepare_inputs_fn: Optional[Callable[[torch.Tensor, Any], dict]] = None,
update_model_kwargs_fn: Optional[Callable[[dict, Any], dict]] = None,
**model_kwargs,
) -> Generator:
logits_processor = prepare_logits_processor(top_k, top_p, temperature)
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
for _ in range(max_generate_tokens):
model_inputs = (
prepare_inputs_fn(input_ids, **model_kwargs) if prepare_inputs_fn is not None else {"input_ids": input_ids}
)
outputs = model(**model_inputs)
next_token_logits = outputs["logits"][:, -1, :]
# pre-process distribution
next_token_logits = logits_processor(input_ids, next_token_logits)
# sample
probs = torch.softmax(next_token_logits, dim=-1, dtype=torch.float)
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
# finished sentences should have their next token be a padding token
if eos_token_id is not None:
if pad_token_id is None:
raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
yield next_tokens
# update generated ids, model inputs for next step
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
if update_model_kwargs_fn is not None:
model_kwargs = update_model_kwargs_fn(outputs, **model_kwargs)
# if eos_token was found in one sentence, set sentence to finished
if eos_token_id is not None:
unfinished_sequences = unfinished_sequences.mul((next_tokens != eos_token_id).long())
# stop when each sentence is finished if early_stopping=True
if early_stopping and _is_sequence_finished(unfinished_sequences):
break
def update_model_kwargs_fn(outputs: dict, **model_kwargs) -> dict:
if "past_key_values" in outputs:
model_kwargs["past"] = outputs["past_key_values"]
else:
model_kwargs["past"] = None
# update token_type_ids with last value
if "token_type_ids" in model_kwargs:
token_type_ids = model_kwargs["token_type_ids"]
model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1)
# update attention mask
if "attention_mask" in model_kwargs:
attention_mask = model_kwargs["attention_mask"]
model_kwargs["attention_mask"] = torch.cat(
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
)
return model_kwargs
class Dialogue(BaseModel):
instruction: str = Field(min_length=1, example="Count up from 1 to 500.")
response: str = Field(example="")
def _format_dialogue(instruction: str, response: str = ""):
return f"\n\n### Instruction:\n{instruction}\n\n### Response:\n{response}"
STOP_PAT = re.compile(r"(###|instruction:).*", flags=(re.I | re.S))
class ChatPromptProcessor:
SAFE_RESPONSE = "The input/response contains inappropriate content, please rephrase your prompt."
def __init__(self, tokenizer, context: str, max_len: int = 2048, censored_words: List[str] = []):
self.tokenizer = tokenizer
self.context = context
self.max_len = max_len
self.censored_words = set([word.lower() for word in censored_words])
# These will be initialized after the first call of preprocess_prompt()
self.context_len: Optional[int] = None
self.dialogue_placeholder_len: Optional[int] = None
def preprocess_prompt(self, history: List[Dialogue], max_new_tokens: int) -> str:
if self.context_len is None:
self.context_len = len(self.tokenizer(self.context)["input_ids"])
if self.dialogue_placeholder_len is None:
self.dialogue_placeholder_len = len(
self.tokenizer(_format_dialogue(""), add_special_tokens=False)["input_ids"]
)
prompt = self.context
# the last dialogue must be in the prompt
last_dialogue = history.pop()
# the response of the last dialogue is empty
assert last_dialogue.response == ""
if (
len(self.tokenizer(_format_dialogue(last_dialogue.instruction), add_special_tokens=False)["input_ids"])
+ max_new_tokens
+ self.context_len
>= self.max_len
):
# to avoid truncate placeholder, apply truncate to the original instruction
instruction_truncated = self.tokenizer(
last_dialogue.instruction,
add_special_tokens=False,
truncation=True,
max_length=(self.max_len - max_new_tokens - self.context_len - self.dialogue_placeholder_len),
)["input_ids"]
instruction_truncated = self.tokenizer.decode(instruction_truncated).lstrip()
prompt += _format_dialogue(instruction_truncated)
return prompt
res_len = self.max_len - max_new_tokens - len(self.tokenizer(prompt)["input_ids"])
rows = []
for dialogue in history[::-1]:
text = _format_dialogue(dialogue.instruction, dialogue.response)
cur_len = len(self.tokenizer(text, add_special_tokens=False)["input_ids"])
if res_len - cur_len < 0:
break
res_len -= cur_len
rows.insert(0, text)
prompt += "".join(rows) + _format_dialogue(last_dialogue.instruction)
return prompt
def postprocess_output(self, output: str) -> str:
output = STOP_PAT.sub("", output)
return output.strip()
def has_censored_words(self, text: str) -> bool:
if len(self.censored_words) == 0:
return False
intersection = set(jieba.cut(text.lower())) & self.censored_words
return len(intersection) > 0
class LockedIterator:
def __init__(self, it, lock: Lock) -> None:
self.lock = lock
self.it = iter(it)
def __iter__(self):
return self
def __next__(self):
with self.lock:
return next(self.it)
def load_json(path: str):
with open(path) as f:
return json.load(f)

View File

@ -1,2 +0,0 @@
pytest
colossalai==0.3.3

View File

@ -1,14 +0,0 @@
transformers>=4.20.1
tqdm
datasets
loralib
colossalai==0.3.3
torch<2.0.0, >=1.12.1
langchain
tokenizers
fastapi
sse_starlette
wandb
sentencepiece
gpustat
tensorboard

View File

@ -1,33 +0,0 @@
#!/bin/bash
set -xue
echo "Hint: You can run this script with 'verbose' as the first argument to run all strategies."
if [[ $# -ne 0 && "$1" == "verbose" ]]; then
STRATEGIES=(
'ddp'
'colossalai_gemini'
'colossalai_gemini_cpu'
'colossalai_zero2'
'colossalai_zero2_cpu'
'colossalai_zero1'
'colossalai_zero1_cpu'
)
else
STRATEGIES=(
'colossalai_zero2'
)
fi
BASE_DIR=$(dirname $(dirname $(realpath $BASH_SOURCE)))
BENCHMARKS_DIR=$BASE_DIR/benchmarks
echo "[Test]: testing benchmarks ..."
for strategy in ${STRATEGIES[@]}; do
torchrun --standalone --nproc_per_node 1 $BENCHMARKS_DIR/benchmark_opt_lora_dummy.py \
--model 125m --critic_model 125m --strategy ${strategy} --lora_rank 4 \
--num_episodes 2 --num_collect_steps 4 --num_update_steps 2 \
--train_batch_size 2 --experience_batch_size 4
done

View File

@ -1,91 +0,0 @@
import os
import tempfile
from contextlib import nullcontext
import pytest
import torch
import torch.distributed as dist
from coati.models.gpt import GPTActor
from coati.models.utils import calc_action_log_probs
from coati.trainer.strategies import DDPStrategy, GeminiStrategy, LowLevelZeroStrategy, Strategy
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
from colossalai.nn.optimizer import HybridAdam
from colossalai.testing import rerun_if_address_is_in_use, spawn
GPT_CONFIG = GPT2Config(n_embd=128, n_layer=4, n_head=4)
def get_data(batch_size: int, seq_len: int = 10) -> dict:
input_ids = torch.randint(0, 50257, (batch_size, seq_len), device="cuda")
attention_mask = torch.ones_like(input_ids)
return dict(input_ids=input_ids, attention_mask=attention_mask)
def train_step(strategy: Strategy, actor: GPTActor, actor_optim: HybridAdam, batch_size: int = 8):
data = get_data(batch_size)
action_mask = torch.ones_like(data["attention_mask"], dtype=torch.bool)
actor_logits = actor(data["input_ids"], data["attention_mask"])["logits"]
action_log_probs = calc_action_log_probs(actor_logits, data["input_ids"], action_mask.size(1))
loss = action_log_probs.sum()
strategy.backward(loss, actor, actor_optim)
strategy.optimizer_step(actor_optim)
def run_test_checkpoint(strategy_name: str, shard: bool):
if strategy_name == "ddp":
strategy = DDPStrategy()
elif strategy_name == "colossalai_gemini":
strategy = GeminiStrategy(placement_policy="auto", initial_scale=2**5)
elif strategy_name == "colossalai_zero2":
strategy = LowLevelZeroStrategy(stage=2, placement_policy="cuda")
else:
raise ValueError(f"Unsupported strategy '{strategy_name}'")
with strategy.model_init_context():
actor = GPTActor(config=GPT_CONFIG).cuda()
actor_optim = HybridAdam(actor.parameters())
actor, actor_optim = strategy.prepare((actor, actor_optim))
train_step(strategy, actor, actor_optim)
ctx = tempfile.TemporaryDirectory() if dist.get_rank() == 0 else nullcontext()
with ctx as dirname:
rank0_dirname = [dirname]
dist.broadcast_object_list(rank0_dirname)
rank0_dirname = rank0_dirname[0]
model_path = os.path.join(rank0_dirname, "model" if shard else f"model.pt")
strategy.save_model(actor, model_path)
optim_path = os.path.join(rank0_dirname, "optim" if shard else "optim.pt")
strategy.save_optimizer(actor_optim, optim_path)
dist.barrier()
strategy.load_model(actor, model_path, strict=False)
strategy.load_optimizer(actor_optim, optim_path)
dist.barrier()
train_step(strategy, actor, actor_optim)
def run_dist(rank: int, world_size: int, port: int, strategy_name: str, shard: bool):
os.environ["RANK"] = str(rank)
os.environ["LOCAL_RANK"] = str(rank)
os.environ["WORLD_SIZE"] = str(world_size)
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = str(port)
run_test_checkpoint(strategy_name, shard)
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [4])
@pytest.mark.parametrize("strategy_name", ["ddp", "colossalai_gemini", "colossalai_zero2"])
@pytest.mark.parametrize("shard", [False, True])
@rerun_if_address_is_in_use()
def test_checkpoint(world_size: int, strategy_name: str, shard: bool):
spawn(run_dist, world_size, strategy_name=strategy_name, shard=shard)
if __name__ == "__main__":
test_checkpoint(2, "colossalai_gemini", shard=False)

View File

@ -1,241 +0,0 @@
import json
import os
import tempfile
from typing import Optional
import pytest
import torch
from coati.dataset.prompt_dataset import PromptDataset
from coati.dataset.reward_dataset import HhRlhfDataset, RmStaticDataset
from coati.dataset.sft_dataset import IGNORE_INDEX, SFTDataset, SupervisedDataset
from coati.models.chatglm.chatglm_tokenizer import ChatGLMTokenizer
from datasets import load_dataset
from transformers import AutoTokenizer, BloomTokenizerFast, LlamaTokenizer, PreTrainedTokenizer
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
SFT_DATASET = [
{
"instruction": "Provide a list of the top 10 most popular mobile games in Asia",
"input": "",
"output": "The top 10 most popular mobile games in Asia are:\n1) PUBG Mobile\n2) Pokemon Go\n3) Candy Crush Saga\n4) Free Fire\n5) Clash of Clans\n6) Mario Kart Tour\n7) Arena of Valor\n8) Fantasy Westward Journey\n9) Subway Surfers\n10) ARK Survival Evolved",
"id": 0,
},
{
"instruction": "Please provide an action plan for reducing carbon footprint on a corporate level",
"input": "",
"output": "An action plan for reducing carbon footprint on a corporate level could include switching to renewable energy sources (e.g., solar or wind powered), investing in energy efficient infrastructure, implementing green production practices (e.g., reduce water and paper usage, dispose of materials responsibly, recycle/reuse materials), reducing or eliminating travel, encouraging employees to be conscious of and reduce their own energy usage, and incentivizing employees to participate in sustainable work practices.",
"id": 1,
},
{
"instruction": "Write a persuasive email to your boss explaining why you should have a pay raise",
"input": "",
"output": "Dear [Boss], \n\nI hope this message finds you well. I am writing to request a pay raise.\n\nAs you know, I have been a dedicated and hardworking member of the team since I started working here [insert number] of months/years ago. My enthusiasm and passion for my job has remained consistent over the years, and I have always given 100% to my role. \n\nI understand that the current financial situation is challenging, however, I would sincerely appreciate you taking the time to consider my request. I believe that my dedication to the job and the value that I bring to the organization warrants a raise. I work diligently and am confident that I can continue to be an asset to the company. \n\nI hope my request is taken into account and I thank you in advance for your understanding. I look forward to our conversation. \n\nSincerely,\n[Your Name]",
"id": 2,
},
]
PROMPT_DATASET = [
{
"instruction": 'Edit this paragraph to make it more concise: "Yesterday, I went to the store and bought some things. Then, I came home and put them away. After that, I went for a walk and met some friends."',
"id": 0,
},
{"instruction": "Write a descriptive paragraph about a memorable vacation you went on", "id": 1},
{"instruction": "Write a persuasive essay arguing why homework should be banned in schools", "id": 2},
{"instruction": "Create a chart comparing the statistics on student debt in the United States.", "id": 3},
]
def make_tokenizer(model: str):
if model == "gpt2":
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
tokenizer.pad_token = tokenizer.eos_token
elif model == "bloom":
tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom-560m")
tokenizer.pad_token = tokenizer.eos_token
elif model == "opt":
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
tokenizer.pad_token = tokenizer.eos_token
elif model == "llama":
tokenizer = LlamaTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
tokenizer.pad_token = tokenizer.unk_token
elif model == "chatglm":
tokenizer = ChatGLMTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
else:
raise ValueError(f"Unsupported model '{model}'")
return tokenizer
def check_content(input_ids_stripped: torch.Tensor, tokenizer: PreTrainedTokenizer, model: str):
if model == "opt":
# NOTE: Contrary to GPT2, OPT adds the EOS token </s> to the beginning of every prompt.
assert input_ids_stripped[0] == tokenizer.eos_token_id
input_ids_stripped = input_ids_stripped[1:]
elif model == "llama":
assert input_ids_stripped[0] == tokenizer.bos_token_id
input_ids_stripped = input_ids_stripped[1:]
elif model == "chatglm":
assert input_ids_stripped[0] == tokenizer.bos_token_id
assert input_ids_stripped[-1] == tokenizer.eos_token_id
input_ids_stripped = input_ids_stripped[1:-1]
assert torch.all(input_ids_stripped != tokenizer.pad_token_id)
assert torch.all(input_ids_stripped != tokenizer.bos_token_id)
assert torch.all(input_ids_stripped != tokenizer.eos_token_id)
assert input_ids_stripped != tokenizer.sep_token_id
assert input_ids_stripped != tokenizer.cls_token_id
if model == "chatglm":
assert torch.all(input_ids_stripped != tokenizer.mask_token_id)
else:
assert input_ids_stripped != tokenizer.mask_token_id
@pytest.mark.parametrize("model", ["gpt2", "bloom", "opt", "llama"])
@pytest.mark.parametrize("max_length", [32, 1024])
@pytest.mark.parametrize("max_datasets_size", [2])
def test_prompt_dataset(model: str, max_datasets_size: int, max_length: int):
with tempfile.TemporaryDirectory() as tmp_dir:
dataset_name = "prompt_dataset.json"
with open(os.path.join(tmp_dir, dataset_name), "w") as f:
json.dump(PROMPT_DATASET, f)
tokenizer = make_tokenizer(model)
assert tokenizer.padding_side in ("left", "right")
prompt_dataset = PromptDataset(
data_path=os.path.join(tmp_dir, dataset_name),
tokenizer=tokenizer,
max_datasets_size=max_datasets_size,
max_length=max_length,
)
assert len(prompt_dataset) == min(max_datasets_size, len(PROMPT_DATASET))
for i in range(len(prompt_dataset)):
assert isinstance(prompt_dataset[i], dict)
assert list(prompt_dataset[i].keys()) == ["input_ids", "attention_mask"]
input_ids = prompt_dataset[i]["input_ids"]
attention_mask = prompt_dataset[i]["attention_mask"]
attention_mask = attention_mask.bool()
assert input_ids.shape == attention_mask.shape == torch.Size([max_length])
assert torch.all(input_ids[torch.logical_not(attention_mask)] == tokenizer.pad_token_id)
check_content(input_ids.masked_select(attention_mask), tokenizer, model)
@pytest.mark.parametrize("model", ["gpt2", "bloom", "opt", "llama"])
@pytest.mark.parametrize(
["dataset_path", "subset"], [("Anthropic/hh-rlhf", "harmless-base"), ("Dahoas/rm-static", None)]
)
@pytest.mark.parametrize("max_datasets_size", [32])
@pytest.mark.parametrize("max_length", [32, 1024])
def test_reward_dataset(model: str, dataset_path: str, subset: Optional[str], max_datasets_size: int, max_length: int):
data = load_dataset(dataset_path, data_dir=subset)
assert max_datasets_size <= len(data["train"]) and max_datasets_size <= len(data["test"])
train_data = data["train"].select(range(max_datasets_size))
test_data = data["test"].select(range(max_datasets_size))
tokenizer = make_tokenizer(model)
assert tokenizer.padding_side in ("left", "right")
if dataset_path == "Anthropic/hh-rlhf":
train_dataset = HhRlhfDataset(train_data, tokenizer, max_length)
test_dataset = HhRlhfDataset(test_data, tokenizer, max_length)
elif dataset_path == "Dahoas/rm-static":
train_dataset = RmStaticDataset(train_data, tokenizer, max_length)
test_dataset = RmStaticDataset(test_data, tokenizer, max_length)
else:
raise ValueError(f'Unsupported dataset "{dataset_path}"')
assert len(train_dataset) == len(test_dataset) == max_datasets_size
for i in range(max_datasets_size):
chosen_ids, c_mask, reject_ids, r_mask = train_dataset[i]
assert chosen_ids.shape == c_mask.shape == reject_ids.shape == r_mask.shape == torch.Size([max_length])
c_mask = c_mask.to(torch.bool)
r_mask = r_mask.to(torch.bool)
if chosen_ids.masked_select(c_mask)[-1] == tokenizer.eos_token_id:
check_content(chosen_ids.masked_select(c_mask)[:-1], tokenizer, model)
assert torch.all(chosen_ids.masked_select(torch.logical_not(c_mask)) == tokenizer.pad_token_id)
else:
check_content(chosen_ids.masked_select(c_mask), tokenizer, model)
assert torch.all(c_mask)
if reject_ids.masked_select(r_mask)[-1] == tokenizer.eos_token_id:
check_content(reject_ids.masked_select(r_mask)[:-1], tokenizer, model)
assert torch.all(reject_ids.masked_select(torch.logical_not(r_mask)) == tokenizer.pad_token_id)
else:
check_content(reject_ids.masked_select(r_mask), tokenizer, model)
assert torch.all(r_mask)
chosen_ids, c_mask, reject_ids, r_mask = test_dataset[i]
assert chosen_ids.shape == c_mask.shape == reject_ids.shape == r_mask.shape == torch.Size([max_length])
c_mask = c_mask.to(torch.bool)
r_mask = r_mask.to(torch.bool)
if chosen_ids.masked_select(c_mask)[-1] == tokenizer.eos_token_id:
check_content(chosen_ids.masked_select(c_mask)[:-1], tokenizer, model)
assert torch.all(chosen_ids.masked_select(torch.logical_not(c_mask)) == tokenizer.pad_token_id)
else:
check_content(chosen_ids.masked_select(c_mask), tokenizer, model)
assert torch.all(c_mask)
if reject_ids.masked_select(r_mask)[-1] == tokenizer.eos_token_id:
check_content(reject_ids.masked_select(r_mask)[:-1], tokenizer, model)
assert torch.all(reject_ids.masked_select(torch.logical_not(r_mask)) == tokenizer.pad_token_id)
else:
check_content(reject_ids.masked_select(r_mask), tokenizer, model)
assert torch.all(r_mask)
@pytest.mark.parametrize("model", ["gpt2", "bloom", "opt", "llama", "chatglm"])
@pytest.mark.parametrize("dataset_path", ["yizhongw/self_instruct", None])
@pytest.mark.parametrize("max_dataset_size", [2])
@pytest.mark.parametrize("max_length", [32, 1024])
def test_sft_dataset(model: str, dataset_path: Optional[str], max_dataset_size: int, max_length: int):
tokenizer = make_tokenizer(model)
if dataset_path == "yizhongw/self_instruct":
data = load_dataset(dataset_path, "super_natural_instructions")
train_data = data["train"].select(range(max_dataset_size))
sft_dataset = SFTDataset(train_data, tokenizer, max_length)
else:
with tempfile.TemporaryDirectory() as tmp_dir:
dataset_name = "sft_dataset.json"
with open(os.path.join(tmp_dir, dataset_name), "w") as f:
json.dump(SFT_DATASET, f)
sft_dataset = SupervisedDataset(
tokenizer=tokenizer,
data_path=os.path.join(tmp_dir, dataset_name),
max_datasets_size=max_dataset_size,
max_length=max_length,
)
assert len(sft_dataset) == min(max_dataset_size, len(SFT_DATASET))
if isinstance(tokenizer, ChatGLMTokenizer):
for i in range(max_dataset_size):
assert isinstance(sft_dataset[i], dict)
assert list(sft_dataset[i].keys()) == ["input_ids", "labels"]
input_ids = sft_dataset[i]["input_ids"]
labels = sft_dataset[i]["labels"]
assert input_ids.shape == labels.shape == torch.Size([max_length])
ignore_mask = labels == IGNORE_INDEX
assert input_ids.masked_select(torch.logical_not(ignore_mask))[0] == tokenizer.bos_token_id
check_content(input_ids.masked_select(torch.logical_not(ignore_mask)), tokenizer, model)
return
for i in range(max_dataset_size):
assert isinstance(sft_dataset[i], dict)
assert list(sft_dataset[i].keys()) == ["input_ids", "labels", "attention_mask"]
input_ids = sft_dataset[i]["input_ids"]
labels = sft_dataset[i]["labels"]
attention_mask = sft_dataset[i]["attention_mask"].to(torch.bool)
assert input_ids.shape == labels.shape == attention_mask.shape == torch.Size([max_length])
if input_ids.masked_select(attention_mask)[-1] == tokenizer.eos_token_id:
check_content(input_ids.masked_select(attention_mask)[:-1], tokenizer, model)
assert torch.all(input_ids.masked_select(torch.logical_not(attention_mask)) == tokenizer.pad_token_id)
else:
check_content(input_ids.masked_select(attention_mask), tokenizer, model)
assert torch.all(attention_mask)
ignore_mask = labels == IGNORE_INDEX
prompt_mask = torch.logical_and(ignore_mask, attention_mask)
check_content(input_ids.masked_select(prompt_mask), tokenizer, model)
assert torch.all(input_ids.masked_select(ignore_mask ^ prompt_mask) == tokenizer.pad_token_id)
if __name__ == "__main__":
test_sft_dataset(model="bloom", dataset_path="yizhongw/self_instruct", max_dataset_size=2, max_length=256)
test_reward_dataset(
model="gpt2", dataset_path="Anthropic/hh-rlhf", subset="harmless-base", max_datasets_size=8, max_length=256
)
test_prompt_dataset(model="opt", max_datasets_size=2, max_length=128)

View File

@ -1,130 +0,0 @@
import copy
import os
import pytest
import torch
import torch.distributed as dist
from coati.experience_buffer import NaiveExperienceBuffer
from coati.experience_maker import NaiveExperienceMaker
from coati.models.base import RewardModel
from coati.models.gpt import GPTActor, GPTCritic
from coati.trainer.ppo import _set_default_generate_kwargs
from coati.trainer.strategies import DDPStrategy, GeminiStrategy
from coati.trainer.strategies.colossalai import LowLevelZeroStrategy
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
from colossalai.testing import rerun_if_address_is_in_use, spawn
GPT_CONFIG = GPT2Config(n_embd=128, n_layer=4, n_head=4)
def get_data(batch_size: int, seq_len: int = 10) -> dict:
input_ids = torch.randint(0, 50257, (batch_size, seq_len), device="cuda")
attention_mask = torch.ones_like(input_ids)
return dict(input_ids=input_ids, attention_mask=attention_mask)
def gather_and_equal(tensor: torch.Tensor) -> bool:
world_size = dist.get_world_size()
outputs = [torch.empty_like(tensor) for _ in range(world_size)]
dist.all_gather(outputs, tensor.contiguous())
for t in outputs[1:]:
if not torch.equal(outputs[0], t):
return False
return True
def make_and_consume_experience(strategy):
EXPERIENCE_BATCH_SIZE = 4
SAMPLE_BATCH_SIZE = 2
if strategy == "ddp":
strategy = DDPStrategy()
elif strategy == "colossalai-zero2":
strategy = LowLevelZeroStrategy()
elif strategy == "colossalai-gemini":
strategy = GeminiStrategy(placement_policy="static")
else:
raise ValueError(f'Unsupported strategy "{strategy}"')
with strategy.model_init_context():
actor = GPTActor(config=GPT_CONFIG).cuda()
critic = GPTCritic(config=GPT_CONFIG).cuda()
initial_model = GPTActor(config=GPT_CONFIG).cuda()
reward_model = RewardModel(model=copy.deepcopy(critic.model)).cuda()
actor, critic, initial_model, reward_model = strategy.prepare(actor, critic, initial_model, reward_model)
class MockTokenizer:
def __init__(self):
self.padding_side = "left"
self.eos_token_id = 0
self.pad_token_id = 0
tokenizer = MockTokenizer()
experience_maker = NaiveExperienceMaker(actor, critic, reward_model, initial_model, tokenizer)
data_buffer = NaiveExperienceBuffer(SAMPLE_BATCH_SIZE, cpu_offload=False)
generate_kwargs = dict(do_sample=True, max_length=16)
generate_kwargs = _set_default_generate_kwargs(strategy, generate_kwargs, actor)
# experience of all ranks should be the same
for _ in range(2):
data = get_data(EXPERIENCE_BATCH_SIZE)
assert gather_and_equal(data["input_ids"])
assert gather_and_equal(data["attention_mask"])
experience = experience_maker.make_experience(**data, do_sample=True, max_length=16)
assert gather_and_equal(experience.sequences)
assert gather_and_equal(experience.action_log_probs)
assert gather_and_equal(experience.values)
assert gather_and_equal(experience.reward)
assert gather_and_equal(experience.advantages)
assert gather_and_equal(experience.action_mask)
assert gather_and_equal(experience.attention_mask)
data_buffer.append(experience)
# data buffer's data should be the same
buffer_size = torch.tensor([len(data_buffer)], device="cuda")
assert gather_and_equal(buffer_size)
for item in data_buffer.items:
assert gather_and_equal(item.sequences)
assert gather_and_equal(item.action_log_probs)
assert gather_and_equal(item.values)
assert gather_and_equal(item.reward)
assert gather_and_equal(item.advantages)
assert gather_and_equal(item.action_mask)
assert gather_and_equal(item.attention_mask)
# dataloader of each rank should have the same size and different batch
dataloader = strategy.setup_dataloader(data_buffer)
dataloader_size = torch.tensor([len(dataloader)], device="cuda")
assert gather_and_equal(dataloader_size)
for experience in dataloader:
assert not gather_and_equal(experience.sequences)
assert not gather_and_equal(experience.action_log_probs)
assert not gather_and_equal(experience.values)
assert not gather_and_equal(experience.reward)
assert not gather_and_equal(experience.advantages)
# action mask and attention mask may be same
def run_dist(rank, world_size, port, strategy):
os.environ["RANK"] = str(rank)
os.environ["LOCAL_RANK"] = str(rank)
os.environ["WORLD_SIZE"] = str(world_size)
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = str(port)
make_and_consume_experience(strategy)
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [2])
@pytest.mark.parametrize("strategy", ["ddp", "colossalai-zero2", "colossalai-gemini"])
@rerun_if_address_is_in_use()
def test_experience(world_size, strategy):
spawn(run_dist, world_size, strategy=strategy)
if __name__ == "__main__":
test_experience(2, "colossalai-zero2")

View File

@ -1,11 +0,0 @@
set -xue
BASE_DIR=$(dirname $(dirname $(realpath $BASH_SOURCE)))
EXAMPLES_DIR=$BASE_DIR/examples
echo "[Test]: testing inference ..."
# HACK: skip llama due to oom
for model in 'gpt2' 'bloom' 'opt'; do
python $EXAMPLES_DIR/inference.py --model $model
done

View File

@ -1,245 +0,0 @@
import copy
from typing import Any, Callable, Dict, Tuple
import pytest
import torch
import torch.nn as nn
from coati.models.base import Actor, Critic, RewardModel, get_base_model
from coati.models.bloom import BLOOMRM, BLOOMActor, BLOOMCritic
from coati.models.chatglm import ChatGLMActor
from coati.models.chatglm.chatglm_tokenizer import ChatGLMTokenizer
from coati.models.generation import generate
from coati.models.gpt import GPTRM, GPTActor, GPTCritic
from coati.models.llama import LlamaActor
from coati.models.lora import LoraLinear, convert_to_lora_module
from coati.models.loss import GPTLMLoss, LogExpLoss, LogSigLoss, PolicyLoss, ValueLoss
from coati.models.opt import OPTRM, OPTActor, OPTCritic
from coati.models.utils import calc_action_log_probs, masked_mean
@pytest.mark.parametrize("batch_size", [4])
@pytest.mark.parametrize("seq_len", [32])
@pytest.mark.parametrize(
"actor_maker",
[
lambda: BLOOMActor(),
lambda: GPTActor(),
# HACK: skip llama due to long execution time
# lambda: LlamaActor(),
lambda: OPTActor(),
],
)
@pytest.mark.parametrize(
"generate_kwargs",
[
{
"max_length": 64,
"use_cache": True,
"do_sample": True,
"temperature": 1.0,
"top_k": 50,
}
],
)
def test_generation(actor_maker: Callable[[], Actor], batch_size: int, seq_len: int, generate_kwargs: Dict[str, Any]):
class MockTokenizer:
def __init__(self):
self.padding_side = "left"
self.eos_token_id = 0
self.pad_token_id = 0
actor = actor_maker()
input_ids = torch.randint(0, 100, (batch_size, seq_len)).cuda()
tokenizer = MockTokenizer()
sequences = generate(actor.cuda(), input_ids, tokenizer, **generate_kwargs)
assert sequences.shape == (batch_size, generate_kwargs["max_length"])
def test_utils():
fn_input = {"tensor": torch.ones((10,)), "mask": torch.randint(0, 2, (10,))}
fn_output = masked_mean(dim=0, **fn_input)
assert fn_output.dim() == 0
assert torch.allclose(fn_output, torch.tensor(1.0))
batch_size = 4
seq_len = 32
num_labels = 10
num_actions = 2
fn_input = {
"logits": torch.randn((batch_size, seq_len, num_labels)),
"sequences": torch.randint(0, num_labels, (batch_size, seq_len)),
"num_actions": num_actions,
}
fn_output = calc_action_log_probs(**fn_input)
assert fn_output.shape == (batch_size, num_actions)
@pytest.mark.parametrize("lora_rank", [4])
@pytest.mark.parametrize("num_dim", [32])
@pytest.mark.parametrize("num_layers", [4])
def test_lora(lora_rank: int, num_dim: int, num_layers: int):
model = nn.ModuleList([nn.Linear(num_dim, num_dim) for _ in range(num_layers)])
lora_model = convert_to_lora_module(model, lora_rank)
assert isinstance(lora_model, nn.ModuleList)
for i in range(num_layers):
assert isinstance(lora_model[i], LoraLinear)
assert lora_model[i].lora_A.shape == (lora_rank, num_dim)
assert lora_model[i].lora_B.shape == (num_dim, lora_rank)
old_model = copy.deepcopy(lora_model)
for i in range(num_layers):
assert isinstance(lora_model[i], LoraLinear)
assert torch.allclose(old_model[i].weight, lora_model[i].weight)
assert torch.allclose(old_model[i].bias, lora_model[i].bias)
assert torch.allclose(old_model[i].lora_B @ old_model[i].lora_A, lora_model[i].lora_B @ lora_model[i].lora_A)
optimizer = torch.optim.Adam(lora_model.parameters())
x = torch.randn(8, num_dim)
for i in range(num_layers):
x = lora_model[i](x)
loss = x.sum()
loss.backward()
optimizer.step()
for i in range(num_layers):
assert isinstance(lora_model[i], LoraLinear)
assert torch.allclose(old_model[i].weight, lora_model[i].weight)
assert torch.allclose(old_model[i].bias, lora_model[i].bias)
assert not torch.allclose(
old_model[i].lora_B @ old_model[i].lora_A, lora_model[i].lora_B @ lora_model[i].lora_A
)
@pytest.mark.parametrize("batch_size", [8])
@pytest.mark.parametrize("seq_len", [128])
@pytest.mark.parametrize(
"models_maker",
[
lambda: (BLOOMActor(), BLOOMCritic(), BLOOMRM()),
lambda: (GPTActor(), GPTCritic(), GPTRM()),
# HACK: skip llama due to long execution time
# lambda: (LlamaActor(), LlamaCritic(), LlamaRM()),
lambda: (OPTActor(), OPTCritic(), OPTRM()),
lambda: (ChatGLMActor(), None, None),
],
)
@torch.no_grad()
def test_models(models_maker: Callable[[], Tuple[Actor, Critic, RewardModel]], batch_size: int, seq_len: int):
actor_input = {
"input_ids": torch.randint(0, 100, (batch_size, seq_len)),
"attention_mask": torch.randint(0, 2, (batch_size, seq_len)),
}
critic_input = {
"sequences": torch.randint(0, 100, (batch_size, seq_len)),
"attention_mask": torch.randint(0, 2, (batch_size, seq_len)),
}
rm_input = {
"sequences": torch.randint(0, 100, (batch_size, seq_len)),
"attention_mask": torch.randint(0, 2, (batch_size, seq_len)),
}
actor, critic, rm = models_maker()
if isinstance(actor, ChatGLMActor):
actor = actor.float()
tokenizer = ChatGLMTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
chatglm_special_token = torch.tensor([tokenizer.gmask_token_id, tokenizer.bos_token_id]).repeat(batch_size, 1)
actor_input = {
"input_ids": torch.cat(
(
torch.randint(0, 100, (batch_size, seq_len // 2)),
chatglm_special_token,
torch.randint(0, 100, (batch_size, seq_len // 2 - 2)),
),
dim=1,
),
"attention_mask": torch.randint(0, 2, (batch_size, 1, seq_len, seq_len)),
}
assert isinstance(actor, Actor)
get_base_model(actor)
actor_output = actor(**actor_input)
assert actor_output.logits.shape[:2] == (batch_size, seq_len)
if critic:
assert isinstance(critic, Critic)
get_base_model(critic)
critic_output = critic(**critic_input)
assert critic_output.shape == (batch_size,)
if rm:
assert isinstance(rm, RewardModel)
get_base_model(rm)
rm_output = rm(**rm_input)
assert rm_output.shape == (batch_size,)
@pytest.mark.parametrize("batch_size", [16])
@pytest.mark.parametrize("seq_len", [128])
@pytest.mark.parametrize("num_labels", [100])
def test_loss(batch_size: int, seq_len: int, num_labels: int):
loss = GPTLMLoss()
loss_input = {
"logits": torch.randn(batch_size, seq_len, num_labels),
"labels": torch.randint(0, num_labels, (batch_size, seq_len)),
}
loss(**loss_input)
loss = PolicyLoss()
loss_input = {
"log_probs": torch.randn(
batch_size,
),
"old_log_probs": torch.randn(
batch_size,
),
"advantages": torch.randn(
batch_size,
),
}
loss(**loss_input)
loss = ValueLoss()
loss_input = {
"values": torch.randn(
batch_size,
),
"old_values": torch.randn(
batch_size,
),
"reward": torch.randn(
batch_size,
),
}
loss(**loss_input)
loss = LogSigLoss()
loss_input = {
"chosen_reward": torch.randn(
batch_size,
),
"reject_reward": torch.randn(
batch_size,
),
}
loss(**loss_input)
loss = LogExpLoss()
loss_input = {
"chosen_reward": torch.randn(
batch_size,
),
"reject_reward": torch.randn(
batch_size,
),
}
loss(**loss_input)
if __name__ == "__main__":
generate_kwargs = dict(max_length=40, use_cache=True, do_sample=True, temperature=1.0, top_k=50)
test_generation(lambda: LlamaActor(), batch_size=4, seq_len=32, generate_kwargs=generate_kwargs)
test_utils()
test_lora(lora_rank=2, num_dim=8, num_layers=2)
test_models(models_maker=lambda: (BLOOMActor(), BLOOMCritic(), BLOOMRM()), batch_size=8, seq_len=128)
test_loss(batch_size=8, seq_len=128, num_labels=100)

View File

@ -1,233 +0,0 @@
#!/usr/bin/env bash
set_n_least_used_CUDA_VISIBLE_DEVICES() {
local n=${1:-"9999"}
echo "GPU Memory Usage:"
local FIRST_N_GPU_IDS=$(nvidia-smi --query-gpu=memory.used --format=csv |
tail -n +2 |
nl -v 0 |
tee /dev/tty |
sort -g -k 2 |
awk '{print $1}' |
head -n $n)
export CUDA_VISIBLE_DEVICES=$(echo $FIRST_N_GPU_IDS | sed 's/ /,/g')
echo "Now CUDA_VISIBLE_DEVICES is set to:"
echo "CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES"
}
set_n_least_used_CUDA_VISIBLE_DEVICES 4
set -xu
if [ -z "$SFT_DATASET" ]; then
echo "Please set \$SFT_DATASET to the path to sft dataset."
exit 1
fi
if [ -z "$PROMPT_DATASET" ]; then
echo "Please set \$PROMPT_DATASET to the path to prompts csv."
exit 1
fi
if [ -z "$PRETRAIN_DATASET" ]; then
echo "Please set \$PRETRAIN_DATASET to the path to alpaca data."
exit 1
fi
NUM_RETRY=3
BASE_DIR=$(dirname $(dirname $(realpath $BASH_SOURCE)))
EXAMPLES_DIR=$BASE_DIR/examples
MODELS_DIR=$BASE_DIR/examples/models_config
MODELS=('gpt2' 'bloom' 'opt' 'llama')
STRATEGIES=('ddp' 'colossalai_gemini' 'colossalai_zero2')
export OMP_NUM_THREADS=8
# install requirements
pip install -r $EXAMPLES_DIR/requirements.txt
python $EXAMPLES_DIR/download_model.py --model-dir $MODELS_DIR --config-only
get_pretrain() {
local model=$1
if [[ $model == "gpt2" ]]; then
echo "gpt2"
elif [[ $model == "bloom" ]]; then
echo "bigscience/bloom-560m"
elif [[ $model == "opt" ]]; then
echo "facebook/opt-350m"
else
echo "Unknown model $model"
exit 1
fi
}
random_choice() {
local arr=("$@")
local len=${#arr[@]}
local idx=$((RANDOM % len))
echo ${arr[$idx]}
}
echo "[Test]: testing sft ..."
# FIXME: This is a hack to skip tests that are not working
# - gpt2-ddp: RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation
# - llama-*: These tests can be passed locally, skipped for long execution time
# - *-gemini: Gemini plugin does not support `from_pretrained` yet
SKIPPED_TESTS=(
"gpt2-ddp"
"llama-ddp"
"llama-colossalai_gemini"
"llama-colossalai_zero2"
)
GRAD_CKPTS=('' '--grad_checkpoint')
for lora_rank in '0'; do
for model in ${MODELS[@]}; do
strategies=($(shuf -e "${STRATEGIES[@]}"))
for strategy in ${strategies[@]}; do
if [[ " ${SKIPPED_TESTS[*]} " =~ " $model-$strategy-$lora_rank " ]]; then
echo "[Test]: Skipped $model-$strategy-$lora_rank"
continue
elif [[ " ${SKIPPED_TESTS[*]} " =~ " $model-$strategy " ]]; then
echo "[Test]: Skipped $model-$strategy"
continue
fi
pretrain=$(get_pretrain $model)
pretrain_model=""
if [[ $lora_rank -gt 0 ]]; then
pretrain_model="--pretrain $pretrain"
fi
grad_ckpt=$(random_choice "${GRAD_CKPTS[@]}")
for i in $(seq $NUM_RETRY); do
echo "[Test]: $model-$strategy-$lora_rank, attempt $i"
torchrun --standalone --nproc_per_node=4 $EXAMPLES_DIR/train_sft.py \
$pretrain_model --tokenizer $MODELS_DIR/$model \
--model $model --strategy $strategy --lora_rank $lora_rank $grad_ckpt \
--dataset $SFT_DATASET --max_datasets_size 8 \
--max_epochs 1 --batch_size 1 --accumulation_steps 1 --lr 1e-8 \
--save_path $EXAMPLES_DIR/rlhf_models/sft_ckpt_${model}_${lora_rank}
passed=$?
if [ $passed -eq 0 ]; then
break
fi
done
if [ $passed -ne 0 ]; then
echo "[Test]: Failed $model-$strategy-$lora_rank"
exit 1
fi
done
done
done
echo "[Test]: testing reward model ..."
# FIXME: This is a hack to skip tests that are not working
# - gpt2-ddp: RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation
# - llama-*: These tests can be passed locally, skipped for long execution time
# - *-gemini: Gemini plugin does not support `from_pretrained` yet
SKIPPED_TESTS=(
"gpt2-ddp"
"llama-ddp"
"llama-colossalai_gemini"
"llama-colossalai_zero2"
)
LOSS_FNS=('log_sig' 'log_exp')
DATASETS=('Anthropic/hh-rlhf' 'Dahoas/rm-static')
for lora_rank in '0'; do
for model in ${MODELS[@]}; do
strategies=($(shuf -e "${STRATEGIES[@]}"))
for strategy in ${strategies[@]}; do
if [[ " ${SKIPPED_TESTS[*]} " =~ " $model-$strategy-$lora_rank " ]]; then
echo "[Test]: Skipped $model-$strategy-$lora_rank"
continue
elif [[ " ${SKIPPED_TESTS[*]} " =~ " $model-$strategy " ]]; then
echo "[Test]: Skipped $model-$strategy"
continue
fi
pretrain=$(get_pretrain $model)
pretrain_model=""
if [[ $lora_rank -gt 0 ]]; then
pretrain_model="--pretrain $pretrain"
fi
loss_fn=$(random_choice "${LOSS_FNS[@]}")
dataset=$(random_choice "${DATASETS[@]}")
subset=$(if [[ $dataset == "Dahoas/rm-static" ]]; then echo "None"; else echo "harmless-base"; fi)
for i in $(seq $NUM_RETRY); do
echo "[Test]: $model-$strategy-$lora_rank, attempt $i"
torchrun --standalone --nproc_per_node=4 $EXAMPLES_DIR/train_reward_model.py \
$pretrain_model --tokenizer $MODELS_DIR/$model \
--dataset $dataset --subset $subset --max_datasets_size 8 \
--model $model --strategy $strategy --lora_rank $lora_rank \
--loss_fn $loss_fn --batch_size 1 --lr 1e-8 \
--save_path $EXAMPLES_DIR/rlhf_models/rm_ckpt_${model}_${lora_rank}.pt
passed=$?
if [ $passed -eq 0 ]; then
break
fi
done
if [ $passed -ne 0 ]; then
echo "[Test]: Failed to train reward model $model-$strategy-$lora_rank"
exit 1
fi
done
done
done
echo "[Test]: testing RLHF ..."
# FIXME: This is a hack to skip tests that are not working
# - gpt2-ddp: RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation
# - llama-*: These tests can be passed locally, skipped for long execution time
# - *-gemini: Gemini plugin does not support `from_pretrained` yet
SKIPPED_TESTS=(
"gpt2-ddp"
"llama-ddp"
"llama-colossalai_gemini"
"llama-colossalai_zero2"
)
for model in ${MODELS[@]}; do
for lora_rank in '0'; do
strategies=($(shuf -e "${STRATEGIES[@]}"))
for strategy in ${strategies[@]}; do
if [[ " ${SKIPPED_TESTS[*]} " =~ " $model-$strategy-$lora_rank " ]]; then
echo "[Test]: Skipped $model-$strategy-$lora_rank"
continue
elif [[ " ${SKIPPED_TESTS[*]} " =~ " $model-$strategy " ]]; then
echo "[Test]: Skipped $model-$strategy"
continue
fi
rm_pretrain=$(get_pretrain $model)
rm_pretrain_model=""
if [[ $lora_rank -gt 0 ]]; then
rm_pretrain_model="--rm_pretrain $rm_pretrain"
fi
for i in $(seq $NUM_RETRY); do
echo "[Test]: $model-$strategy-$lora_rank, attempt $i"
torchrun --standalone --nproc_per_node=4 $EXAMPLES_DIR/train_prompts.py \
--prompt_dataset $PROMPT_DATASET --pretrain_dataset $PRETRAIN_DATASET --max_datasets_size 32 \
--strategy $strategy --model $model --tokenizer $MODELS_DIR/$model \
--num_episodes 1 --num_collect_steps 1 --num_update_steps 1 --lr 1e-8 \
--experience_batch_size 2 --train_batch_size 1 --lora_rank $lora_rank \
--pretrain $EXAMPLES_DIR/rlhf_models/sft_ckpt_${model}_${lora_rank} \
$rm_pretrain_model --rm_path $EXAMPLES_DIR/rlhf_models/rm_ckpt_${model}_${lora_rank}.pt \
--save_path $EXAMPLES_DIR/rlhf_models/actor_checkpoint_prompts
passed=$?
if [ $passed -eq 0 ]; then
break
fi
done
if [ $passed -ne 0 ]; then
echo "[Test]: Failed to train RLHF $model-$strategy-$lora_rank"
exit 1
fi
done
rm -rf $EXAMPLES_DIR/rlhf_models/sft_ckpt_${model}_${lora_rank}
rm $EXAMPLES_DIR/rlhf_models/rm_ckpt_${model}_${lora_rank}.pt
done
done
rm -rf $EXAMPLES_DIR/rlhf_models/actor_checkpoint_prompts

13
applications/Chat/.gitignore → applications/ColossalChat/.gitignore vendored Normal file → Executable file
View File

@ -143,6 +143,17 @@ docs/.build
*.pt
# wandb log
example/wandb/
examples/wandb/
examples/logs/
examples/output/
examples/awesome-chatgpt-prompts/
temp/
# ColossalChat
applications/ColossalChat/logs
applications/ColossalChat/models
applications/ColossalChat/sft_data
applications/ColossalChat/prompt_data
applications/ColossalChat/preference_data
applications/ColossalChat/temp

View File

View File

@ -13,10 +13,10 @@
- [Install the environment](#install-the-environment)
- [Install the Transformers](#install-the-transformers)
- [How to use?](#how-to-use)
- [Supervised datasets collection](#supervised-datasets-collection)
- [RLHF Training Stage1 - Supervised instructs tuning](#RLHF-training-stage1---supervised-instructs-tuning)
- [RLHF Training Stage2 - Training reward model](#RLHF-training-stage2---training-reward-model)
- [RLHF Training Stage3 - Training model with reinforcement learning by human feedback](#RLHF-training-stage3---training-model-with-reinforcement-learning-by-human-feedback)
- [Supervised datasets collection](#step-1-data-collection)
- [RLHF Training Stage1 - Supervised instructs tuning](#rlhf-training-stage1---supervised-instructs-tuning)
- [RLHF Training Stage2 - Training reward model](#rlhf-training-stage2---training-reward-model)
- [RLHF Training Stage3 - Training model with reinforcement learning by human feedback](#rlhf-training-stage3---proximal-policy-optimization)
- [Inference Quantization and Serving - After Training](#inference-quantization-and-serving---after-training)
- [Coati7B examples](#coati7b-examples)
- [Generation](#generation)
@ -36,7 +36,7 @@
---
## What is ColossalChat and Coati ?
## What Is ColossalChat And Coati ?
[ColossalChat](https://github.com/hpcaitech/ColossalAI/tree/main/applications/Chat) is the project to implement LLM with RLHF, powered by the [Colossal-AI](https://github.com/hpcaitech/ColossalAI) project.
@ -91,107 +91,191 @@ More details can be found in the latest news.
## Install
### Install the environment
### Install the Environment
```bash
conda create -n coati
conda activate coati
# Create new environment
conda create -n colossal-chat python=3.10.9 (>=3.8.7)
conda activate colossal-chat
# Install flash-attention
git clone -b v2.0.5 https://github.com/Dao-AILab/flash-attention.git
cd $FLASH_ATTENTION_ROOT/
pip install .
cd $FLASH_ATTENTION_ROOT/csrc/xentropy
pip install .
cd $FLASH_ATTENTION_ROOT/csrc/layer_norm
pip install .
cd $FLASH_ATTENTION_ROOT/csrc/rotary
pip install .
# Clone Colossalai
git clone https://github.com/hpcaitech/ColossalAI.git
cd ColossalAI/applications/Chat
# Install ColossalAI
cd $COLOSSAL_AI_ROOT
BUILD_EXT=1 pip install .
# Install ColossalChat
cd $COLOSSAL_AI_ROOT/applications/Chat
pip install .
```
### Install the Transformers
## How To Use?
```bash
pip install transformers==4.30.2
```
### RLHF Training Stage1 - Supervised Instructs Tuning
## How to use?
Stage1 is supervised instructs fine-tuning (SFT). This step is a crucial part of the RLHF training process, as it involves training a machine learning model using human-provided instructions to learn the initial behavior for the task at hand. Here's a detailed guide on how to SFT your LLM with ColossalChat. More details can be found in [example guideline](./examples/README.md).
### Supervised datasets collection
We collected 104K bilingual datasets of Chinese and English, and you can find the datasets in this repo
[InstructionWild](https://github.com/XueFuzhao/InstructionWild) and in this [file](https://github.com/XueFuzhao/InstructionWild/blob/main/data/README.md).
Here is how we collected the data
<p align="center">
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/applications/chat/data-collect.png" width=500/>
</p>
### RLHF Training Stage1 - Supervised instructs tuning
Stage1 is supervised instructs fine-tuning, which uses the datasets mentioned earlier to fine-tune the model.
You can run the `examples/train_sft.sh` to start a supervised instructs fine-tuning.
[[Stage1 tutorial video]](https://www.youtube.com/watch?v=-qFBZFmOJfg)
**Note**: the supervised dataset follows the following format,
#### Step 1: Data Collection
The first step in Stage 1 is to collect a dataset of human demonstrations of the following format.
```json
[
{
"instruction": "Provide a list of the top 10 most popular mobile games in Asia",
"input": "",
"output": "The top 10 most popular mobile games in Asia are:\n1) PUBG Mobile\n2) Pokemon Go\n3) Candy Crush Saga\n4) Free Fire\n5) Clash of Clans\n6) Mario Kart Tour\n7) Arena of Valor\n8) Fantasy Westward Journey\n9) Subway Surfers\n10) ARK Survival Evolved",
"id": 0
{"messages":
[
{
"from": "human",
"content": "what are some pranks with a pen i can do?"
},
{
"from": "assistant",
"content": "Are you looking for practical joke ideas?"
},
...
]
},
...
]
```
### RLHF Training Stage2 - Training reward model
#### Step 2: Preprocessing
Once you have collected your SFT dataset, you will need to preprocess it. This involves four steps: data cleaning, data deduplication, formatting and tokenization. In this section, we will focus on formatting and tokenization.
Stage2 trains a reward model, which obtains corresponding scores by manually ranking different outputs for the same prompt and supervises the training of the reward model
In this code, we provide a flexible way for users to set the conversation template for formatting chat data using Huggingface's newest feature--- chat template. Please follow the [example guideline](./examples/README.md) on how to format and tokenize data.
You can run the `examples/train_rm.sh` to start a reward model training.
[[Stage2 tutorial video]](https://www.youtube.com/watch?v=gMx2CApKhuo)
#### Step 3: Training
Choose a suitable model architecture for your task. Note that your model should be compatible with the tokenizer that you used to tokenize the SFT dataset. You can run [train_sft.sh](./examples/training_scripts/train_sft.sh) to start a supervised instructs fine-tuning. More details can be found in [example guideline](./examples/README.md).
### RLHF Training Stage3 - Training model with reinforcement learning by human feedback
### RLHF Training Stage2 - Training Reward Model
Stage3 uses reinforcement learning algorithm, which is the most complex part of the training process:
Stage2 trains a reward model, which obtains corresponding scores by manually ranking different outputs for the same prompt and supervises the training of the reward model.
#### Step 1: Data Collection
Below shows the preference dataset format used in training the reward model.
```json
[
{"context": [
{
"from": "human",
"content": "Introduce butterflies species in Oregon."
}
]
"chosen": [
{
"from": "assistant",
"content": "About 150 species of butterflies live in Oregon, with about 100 species are moths..."
},
...
],
"rejected": [
{
"from": "assistant",
"content": "Are you interested in just the common butterflies? There are a few common ones which will be easy to find..."
},
...
]
},
...
]
```
#### Step 2: Preprocessing
Similar to the second step in the previous stage, we format the reward data into the same structured format as used in step 2 of the SFT stage. You can run [prepare_preference_dataset.sh](./examples/data_preparation_scripts/prepare_preference_dataset.sh) to prepare the preference data for reward model training.
#### Step 3: Training
You can run [train_rm.sh](./examples/training_scripts/train_rm.sh) to start the reward model training. More details can be found in [example guideline](./examples/README.md).
### RLHF Training Stage3 - Proximal Policy Optimization
In stage3 we will use reinforcement learning algorithm--- Proximal Policy Optimization (PPO), which is the most complex part of the training process:
<p align="center">
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/applications/chat/stage-3.jpeg" width=800/>
</p>
You can run the `examples/train_prompts.sh` to start training PPO with human feedback.
[[Stage3 tutorial video]](https://www.youtube.com/watch?v=Z8wwSHxPL9g)
#### Step 1: Data Collection
PPO uses two kind of training data--- the prompt data and the sft data (optional). The first dataset is mandatory, data samples within the prompt dataset ends with a line from "human" and thus the "assistant" needs to generate a response to answer to the "human". Note that you can still use conversation that ends with a line from the "assistant", in that case, the last line will be dropped. Here is an example of the prompt dataset format.
**Note**: the required datasets follow the following format,
```json
[
{"messages":
[
{
"from": "human",
"content": "what are some pranks with a pen i can do?"
}
...
]
},
]
```
- `pretrain dataset`
#### Step 2: Data Preprocessing
To prepare the prompt dataset for PPO training, simply run [prepare_prompt_dataset.sh](./examples/data_preparation_scripts/prepare_prompt_dataset.sh)
```json
[
{
"instruction": "Provide a list of the top 10 most popular mobile games in Asia",
"input": "",
"output": "The top 10 most popular mobile games in Asia are:\n1) PUBG Mobile\n2) Pokemon Go\n3) Candy Crush Saga\n4) Free Fire\n5) Clash of Clans\n6) Mario Kart Tour\n7) Arena of Valor\n8) Fantasy Westward Journey\n9) Subway Surfers\n10) ARK Survival Evolved",
"id": 0
},
...
]
```
#### Step 3: Training
You can run the [train_ppo.sh](./examples/training_scripts/train_ppo.sh) to start PPO training. Here are some unique arguments for PPO, please refer to the training configuration section for other training configuration. More detais can be found in [example guideline](./examples/README.md).
- `prompt dataset`
```bash
--pretrain $PRETRAINED_MODEL_PATH \
--rm_pretrain $PRETRAINED_MODEL_PATH \ # reward model architectual
--tokenizer_dir $PRETRAINED_TOKENIZER_PATH \
--rm_checkpoint_path $REWARD_MODEL_PATH \ # reward model checkpoint path
--prompt_dataset ${prompt_dataset[@]} \ # List of string, the prompt dataset
--ptx_dataset ${ptx_dataset[@]} \ # List of string, the SFT data used in the SFT stage
--ptx_batch_size 1 \ # batch size for calculate ptx loss
--ptx_coef 0.0 \ # none-zero if ptx loss is enable
--num_episodes 2000 \ # number of episodes to train
--num_collect_steps 1 \
--num_update_steps 1 \
--experience_batch_size 8 \
--train_batch_size 4 \
--accumulation_steps 2
```
```json
[
{
"instruction": "Edit this paragraph to make it more concise: \"Yesterday, I went to the store and bought some things. Then, I came home and put them away. After that, I went for a walk and met some friends.\"",
"id": 0
},
{
"instruction": "Write a descriptive paragraph about a memorable vacation you went on",
"id": 1
},
...
]
```
Each episode has two phases, the collect phase and the update phase. During the collect phase, we will collect experiences (answers generated by actor), store those in ExperienceBuffer. Then data in ExperienceBuffer is used during the update phase to update parameter of actor and critic.
For more details, see [`examples/`](https://github.com/hpcaitech/ColossalAI/tree/main/applications/Chat/examples).
- Without tensor parallelism,
```
experience buffer size
= num_process * num_collect_steps * experience_batch_size
= train_batch_size * accumulation_steps * num_process
```
- With tensor parallelism,
```
num_tp_group = num_process / tp
experience buffer size
= num_tp_group * num_collect_steps * experience_batch_size
= train_batch_size * accumulation_steps * num_tp_group
```
## Alternative Option For RLHF: Direct Preference Optimization
For those seeking an alternative to Reinforcement Learning from Human Feedback (RLHF), Direct Preference Optimization (DPO) presents a compelling option. DPO, as detailed in the paper (available at [https://arxiv.org/abs/2305.18290](https://arxiv.org/abs/2305.18290)), DPO offers an low-cost way to perform RLHF and usually request less computation resources compares to PPO.
### DPO Training Stage1 - Supervised Instructs Tuning
Please refer the [sft section](#dpo-training-stage1---supervised-instructs-tuning) in the PPO part.
### DPO Training Stage2 - DPO Training
#### Step 1: Data Collection & Preparation
For DPO training, you only need the preference dataset. Please follow the instruction in the [preference dataset preparation section](#rlhf-training-stage2---training-reward-model) to prepare the preference data for DPO training.
#### Step 2: Training
You can run the [train_dpo.sh](./examples/training_scripts/train_dpo.sh) to start DPO training. More detais can be found in [example guideline](./examples/README.md).
### Inference Quantization and Serving - After Training
@ -301,91 +385,60 @@ You can find more examples in this [repo](https://github.com/XueFuzhao/Instructi
We have integrated the Transformers save and load pipeline, allowing users to freely call Hugging Face's language models and save them in the HF format.
- Option 1: Save the model weights, model config and generation config (Note: tokenizer will not be saved) which can be loaded using HF's from_pretrained method.
```python
from coati.models.llama import LlamaLM
from coati.trainer import SFTTrainer
# if use lora, you can choose to merge lora weights before saving
if args.lora_rank > 0 and args.merge_lora_weights:
from coati.models.lora import LORA_MANAGER
model = LlamaLM(pretrained=args.pretrain)
tokenizer = AutoTokenizer.from_pretrained(args.pretrain)
# NOTE: set model to eval to merge LoRA weights
LORA_MANAGER.merge_weights = True
model.eval()
# save model checkpoint after fitting on only rank0
booster.save_model(model, os.path.join(args.save_dir, "modeling"), shard=True)
(model, optim) = strategy.prepare((model, optim))
trainer = SFTTrainer(model=model,
strategy=strategy,
optim=optim,
train_dataloader=train_dataloader,
eval_dataloader=eval_dataloader,
batch_size=args.batch_size,
max_epochs=args.max_epochs,
accumulation_steps=args.accumulation_steps
)
trainer.fit()
# this saves in pytorch format
strategy.save_model(model, args.save_path, only_rank0=True)
# this saves in HF format
strategy.save_pretrained(model, args.save_path, only_rank0=True, tokenizer=tokenizer)
```
- Option 2: Save the model weights, model config, generation config, as well as the optimizer, learning rate scheduler, running states (Note: tokenizer will not be saved) which are needed for resuming training.
```python
from coati.utils import save_checkpoint
# save model checkpoint after fitting on only rank0
save_checkpoint(
save_dir=actor_save_dir,
booster=actor_booster,
model=model,
optimizer=optim,
lr_scheduler=lr_scheduler,
epoch=0,
step=step,
batch_size=train_batch_size,
coordinator=coordinator,
)
```
To load the saved checkpoint
```python
from coati.utils import load_checkpoint
start_epoch, start_step, sampler_start_idx = load_checkpoint(
load_dir=checkpoint_path,
booster=booster,
model=model,
optimizer=optim,
lr_scheduler=lr_scheduler,
)
```
</details>
<details><summary><b>How to train with limited resources</b></summary>
Here are some examples that can allow you to train a 7B model on a single or multiple consumer-grade GPUs.
Here are some suggestions that can allow you to train a 7B model on a single or multiple consumer-grade GPUs.
If you only have a single 24G GPU, you can use the following script. `batch_size`, `lora_rank` and `grad_checkpoint` are the most important parameters to successfully train the model.
`batch_size`, `lora_rank` and `grad_checkpoint` are the most important parameters to successfully train the model. To maintain a descent batch size for gradient calculation, consider increase the accumulation_step and reduce the batch_size on each rank.
```bash
// [INFO]: MAX GPU MEMORY ALLOCATED: 19148.9345703125 MB
torchrun --standalone --nproc_per_node=1 train_sft.py \
--pretrain "/path/to/LLaMa-7B/" \
--model 'llama' \
--strategy ddp \
--save_path /path/to/Coati-7B \
--dataset /path/to/data.json \
--batch_size 1 \
--accumulation_steps 8 \
--lr 2e-5 \
--max_datasets_size 512 \
--max_epochs 1 \
--lora_rank 16 \
--grad_checkpoint
```
If you only have a single 24G GPU. Generally, using lora and "zero2-cpu" will be sufficient.
`colossalai_gemini` strategy can enable a single 24G GPU to train the whole model without using LoRA if you have sufficient CPU memory. You can use the following script.
```bash
torchrun --standalone --nproc_per_node=1 train_sft.py \
--pretrain "/path/to/LLaMa-7B/" \
--model 'llama' \
--strategy colossalai_gemini \
--save_path /path/to/Coati-7B \
--dataset /path/to/data.json \
--batch_size 1 \
--accumulation_steps 8 \
--lr 2e-5 \
--max_datasets_size 512 \
--max_epochs 1 \
--grad_checkpoint
```
If you have 4x32 GB GPUs, you can even train the whole 7B model using our `colossalai_zero2_cpu` strategy! The script is given as follows.
```bash
torchrun --standalone --nproc_per_node=4 train_sft.py \
--pretrain "/path/to/LLaMa-7B/" \
--model 'llama' \
--strategy colossalai_zero2_cpu \
--save_path /path/to/Coati-7B \
--dataset /path/to/data.json \
--batch_size 1 \
--accumulation_steps 8 \
--lr 2e-5 \
--max_datasets_size 512 \
--max_epochs 1 \
--grad_checkpoint
```
`gemini` and `gemini-auto` can enable a single 24G GPU to train the whole model without using LoRA if you have sufficient CPU memory. But that strategy doesn't support gradient accumulation.
If you have multiple GPUs each has very limited VRAM, say 8GB. You can try the `3d` for the plugin option, which supports tensor parellelism, set `--tp` to the number of GPUs that you have.
</details>
## The Plan
@ -396,6 +449,8 @@ torchrun --standalone --nproc_per_node=4 train_sft.py \
- [x] support inference
- [x] support llama from [facebook](https://github.com/facebookresearch/llama)
- [x] implement PPO-ptx fine-tuning
- [x] support flash-attention
- [x] implement DPO fine-tuning
- [ ] integrate with Ray
- [ ] support more RL paradigms, like Implicit Language Q-Learning (ILQL),
- [ ] support chain-of-thought by [langchain](https://github.com/hwchase17/langchain)
@ -467,6 +522,7 @@ Coati is developed by ColossalAI Team:
- [Fazzie](https://fazzie-key.cool/about/index.html) Contributing to the algorithm and development for SFT.
- [ofey404](https://github.com/ofey404) Contributing to both front-end and back-end development.
- [Wenhao Chen](https://github.com/CWHer) Contributing to subsequent code enhancements and performance improvements.
- [Anbang Ye](https://github.com/YeAnbang) Contributing to the refactored version with updated acceleration framework, LoRA, DPO and PPO.
The PhD student from [(HPC-AI) Lab](https://ai.comp.nus.edu.sg/) also contributed a lot to this project.
- [Zangwei Zheng](https://github.com/zhengzangw)

View File

@ -0,0 +1,17 @@
{
"chat_template": "{% for message in messages %}{% if message['role'] == 'user' %}{{'Human: ' + bos_token + message['content'].strip() + eos_token }}{% elif message['role'] == 'system' %}{{ message['content'].strip() + '\\n\\n' }}{% elif message['role'] == 'assistant' %}{{ 'Assistant: ' + bos_token + message['content'].strip() + eos_token }}{% endif %}{% endfor %}",
"system_message": "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
"human_line_start": [
2
],
"human_line_end": [
2
],
"assistant_line_start": [
2
],
"assistant_line_end": [
2
],
"end_of_system_line_position": 0
}

View File

@ -0,0 +1,37 @@
# Benchmarks
## Benchmark OPT with LoRA on dummy prompt data
We provide various OPT models (string in parentheses is the corresponding model name used in this script):
- OPT-125M (125m)
- OPT-350M (350m)
- OPT-700M (700m)
- OPT-1.3B (1.3b)
- OPT-2.7B (2.7b)
- OPT-3.5B (3.5b)
- OPT-5.5B (5.5b)
- OPT-6.7B (6.7b)
- OPT-10B (10b)
- OPT-13B (13b)
We also provide various training strategies:
- gemini: ColossalAI GeminiPlugin with `placement_policy="cuda"`, like zero3
- gemini_auto: ColossalAI GeminiPlugin with `placement_policy="cpu"`, like zero3-offload
- zero2: ColossalAI zero2
- zero2_cpu: ColossalAI zero2-offload
- 3d: ColossalAI HybridParallelPlugin with TP, DP support
## How to Run
```bash
cd ../tests
# Prepare data for benchmark
SFT_DATASET=/path/to/sft/data/ \
PROMPT_DATASET=/path/to/prompt/data/ \
PRETRAIN_DATASET=/path/to/ptx/data/ \
PREFERENCE_DATASET=/path/to/preference/data \
./test_data_preparation.sh
# Start benchmark
./benchmark_ppo.sh
```

View File

@ -0,0 +1,4 @@
Model=Opt-125m; lora_rank=0; plugin=zero2
Max CUDA memory usage: 26123.16 MB
Model=Opt-125m; lora_rank=0; plugin=zero2
Max CUDA memory usage: 26123.91 MB

View File

@ -0,0 +1,16 @@
facebook/opt-125m; 0; zero2
Performance summary:
Generate 768 samples, throughput: 188.48 samples/s, TFLOPS per GPU: 361.23
Train 768 samples, throughput: 448.38 samples/s, TFLOPS per GPU: 82.84
Overall throughput: 118.42 samples/s
Overall time per sample: 0.01 s
Make experience time per sample: 0.01 s, 62.83%
Learn time per sample: 0.00 s, 26.41%
facebook/opt-125m; 0; zero2
Performance summary:
Generate 768 samples, throughput: 26.32 samples/s, TFLOPS per GPU: 50.45
Train 768 samples, throughput: 71.15 samples/s, TFLOPS per GPU: 13.14
Overall throughput: 18.86 samples/s
Overall time per sample: 0.05 s
Make experience time per sample: 0.04 s, 71.66%
Learn time per sample: 0.01 s, 26.51%

View File

@ -0,0 +1,523 @@
"""
For becnhmarking ppo. Mudified from examples/training_scripts/train_ppo.py
"""
import argparse
import json
import os
import resource
from contextlib import nullcontext
import torch
import torch.distributed as dist
from coati.dataset import (
DataCollatorForPromptDataset,
DataCollatorForSupervisedDataset,
StatefulDistributedSampler,
load_tokenized_dataset,
setup_conversation_template,
setup_distributed_dataloader,
)
from coati.models import Critic, RewardModel, convert_to_lora_module, disable_dropout
from coati.trainer import PPOTrainer
from coati.trainer.callbacks import PerformanceEvaluator
from coati.trainer.utils import is_rank_0
from coati.utils import load_checkpoint, replace_with_flash_attention
from transformers import AutoTokenizer, OPTForCausalLM
from transformers.models.opt.configuration_opt import OPTConfig
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin import GeminiPlugin, HybridParallelPlugin, LowLevelZeroPlugin
from colossalai.cluster import DistCoordinator
from colossalai.lazy import LazyInitContext
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
from colossalai.nn.optimizer import HybridAdam
from colossalai.utils import get_current_device
def get_model_numel(model: torch.nn.Module, plugin: str, tp: int) -> int:
numel = sum(p.numel() for p in model.parameters())
if plugin == "3d" and tp > 1:
numel *= dist.get_world_size()
return numel
def get_gpt_config(model_name: str) -> OPTConfig:
model_map = {
"125m": OPTConfig.from_pretrained("facebook/opt-125m"),
"350m": OPTConfig(hidden_size=1024, ffn_dim=4096, num_hidden_layers=24, num_attention_heads=16),
"700m": OPTConfig(hidden_size=1280, ffn_dim=5120, num_hidden_layers=36, num_attention_heads=20),
"1.3b": OPTConfig.from_pretrained("facebook/opt-1.3b"),
"2.7b": OPTConfig.from_pretrained("facebook/opt-2.7b"),
"3.5b": OPTConfig(hidden_size=3072, ffn_dim=12288, num_hidden_layers=32, num_attention_heads=32),
"5.5b": OPTConfig(hidden_size=3840, ffn_dim=15360, num_hidden_layers=32, num_attention_heads=32),
"6.7b": OPTConfig.from_pretrained("facebook/opt-6.7b"),
"10b": OPTConfig(hidden_size=5120, ffn_dim=20480, num_hidden_layers=32, num_attention_heads=32),
"13b": OPTConfig.from_pretrained("facebook/opt-13b"),
}
try:
return model_map[model_name]
except KeyError:
raise ValueError(f'Unknown model "{model_name}"')
def benchmark_train(args):
# ==============================
# Initialize Distributed Training
# ==============================
colossalai.launch_from_torch({})
coordinator = DistCoordinator()
# ======================================================
# Initialize Model, Objective, Optimizer and LR Scheduler
# ======================================================
init_ctx = LazyInitContext(default_device=get_current_device()) if "gemini" in args.plugin else nullcontext()
booster_policy = None
with init_ctx:
actor = OPTForCausalLM(config=get_gpt_config(args.pretrain))
# Disable dropout
disable_dropout(actor)
ref_model = OPTForCausalLM(config=get_gpt_config(args.pretrain))
reward_model = RewardModel(config=get_gpt_config("350m"))
critic = Critic(config=get_gpt_config("350m"))
disable_dropout(critic)
actor_numel = get_model_numel(actor, args.plugin, args.tp)
critic_numel = get_model_numel(critic, args.plugin, args.tp)
initial_model_numel = get_model_numel(ref_model, args.plugin, args.tp)
reward_model_numel = get_model_numel(reward_model, args.plugin, args.tp)
performance_evaluator = PerformanceEvaluator(
actor_numel,
critic_numel,
initial_model_numel,
reward_model_numel,
enable_grad_checkpoint=False,
ignore_episodes=2,
train_config={"model": "facebook/opt-" + args.pretrain, "lora_rank": args.lora_rank, "plugin": args.plugin},
save_path="./benchmark_performance_summarization.txt",
)
if args.tp > 1:
if reward_model.model.config.architectures[0] != critic.model.config.architectures[0]:
raise ValueError("Reward model and critic model must have the same architecture")
if reward_model.model.config.architectures[0] == "BloomForCausalLM":
from colossalai.shardformer.policies.bloom import BloomPolicy
booster_policy = BloomPolicy()
elif reward_model.model.config.architectures[0] == "LlamaForCausalLM":
from colossalai.shardformer.policies.llama import LlamaPolicy
booster_policy = LlamaPolicy()
elif reward_model.model.config.architectures[0] == "GPT2LMHeadModel":
from colossalai.shardformer.policies.gpt2 import GPT2Policy
booster_policy = GPT2Policy()
elif reward_model.model.config.architectures[0] == "ChatGLMModel":
from colossalai.shardformer.policies.chatglm2 import ChatGLMPolicy
booster_policy = ChatGLMPolicy()
elif reward_model.model.config.architectures[0] == "OPTForCausalLM":
from colossalai.shardformer.policies.opt import OPTPolicy
booster_policy = OPTPolicy()
else:
raise ValueError("Unknown model architecture for policy")
if args.lora_rank > 0:
actor = convert_to_lora_module(actor, args.lora_rank, lora_train_bias=args.lora_train_bias)
critic = convert_to_lora_module(critic, args.lora_rank, lora_train_bias=args.lora_train_bias)
if args.grad_checkpoint and args.lora_rank == 0:
actor.gradient_checkpointing_enable()
critic.model.gradient_checkpointing_enable()
coordinator.print_on_master(msg="Gradient checkpointing enabled successfully")
elif args.lora_rank > 0:
coordinator.print_on_master(msg="Gradient checkpointing will be disabled when LoRA is enabled")
if args.use_flash_attn:
replace_with_flash_attention(model=actor)
replace_with_flash_attention(model=critic)
coordinator.print_on_master(msg="Flash-attention enabled successfully")
# configure tokenizer
tokenizer_dir = args.tokenizer_dir if args.tokenizer_dir is not None else args.pretrain
tokenizer = AutoTokenizer.from_pretrained(tokenizer_dir)
if os.path.exists(args.conversation_template_config):
conversation_template_config = json.load(open(args.conversation_template_config, "r", encoding="utf8"))
conversation_template = setup_conversation_template(
tokenizer, chat_template_config=conversation_template_config, save_path=args.conversation_template_config
)
stop_token_ids = (
conversation_template.assistant_line_end if len(conversation_template.assistant_line_end) > 0 else None
)
else:
raise ValueError("Conversation template config is not provided or incorrect")
if hasattr(tokenizer, "pad_token") and hasattr(tokenizer, "eos_token") and tokenizer.eos_token is not None:
try:
# Some tokenizers doesn't allow to set pad_token mannually e.g., Qwen
tokenizer.pad_token = tokenizer.eos_token
except AttributeError as e:
logger.warning(f"Unable to set pad token to eos token, {str(e)}")
if not hasattr(tokenizer, "pad_token") or tokenizer.pad_token is None:
logger.warning(
"The tokenizer does not have a pad token which is required. May lead to unintended behavior in training, Please consider manually set them."
)
tokenizer.add_bos_token = False
tokenizer.add_eos_token = False
tokenizer.padding_side = "left" # left padding for generation (online learning)
# configure generation config
actor.generation_config.update(
pad_token_id=tokenizer.eos_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id
)
# configure optimizer
coordinator.print_on_master(f"setting up optimizer for actor: lr={args.lr}, weight_decay={args.weight_decay}")
actor_optim = HybridAdam(
model_params=actor.parameters(),
lr=args.lr,
betas=(0.9, 0.95),
weight_decay=args.weight_decay,
adamw_mode=True,
)
coordinator.print_on_master(f"setting up optimizer for critic: lr={args.lr}, weight_decay={args.weight_decay}")
critic_optim = HybridAdam(
model_params=critic.parameters(),
lr=args.critic_lr,
betas=(0.9, 0.95),
weight_decay=args.weight_decay,
adamw_mode=True,
)
# configure dataset
coordinator.print_on_master(f"Load dataset: {args.prompt_dataset}")
mode_map = {"train": "train", "valid": "validation", "test": "test"}
train_prompt_dataset = load_tokenized_dataset(dataset_paths=args.prompt_dataset, mode="train", mode_map=mode_map)
coordinator.print_on_master(f"prompt dataset size: {len(train_prompt_dataset)}")
data_collator = DataCollatorForPromptDataset(tokenizer=tokenizer, max_length=args.max_length - args.max_seq_len)
train_prompt_dataloader = setup_distributed_dataloader(
dataset=train_prompt_dataset,
batch_size=args.experience_batch_size,
shuffle=True,
drop_last=True,
collate_fn=data_collator,
use_tp=args.tp > 1,
)
if len(args.pretrain_dataset) > 0:
train_pretrain_dataset = load_tokenized_dataset(
dataset_paths=args.pretrain_dataset, mode="train", mode_map=mode_map
)
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer, max_length=args.max_length)
train_pretrain_dataloader = setup_distributed_dataloader(
dataset=train_pretrain_dataset,
batch_size=args.ptx_batch_size,
shuffle=True,
drop_last=True,
collate_fn=data_collator,
use_tp=args.tp > 1,
)
else:
train_pretrain_dataloader = None
if args.warmup_steps is None:
args.warmup_steps = int(0.025 * args.num_episodes)
coordinator.print_on_master(f"Warmup steps is set to {args.warmup_steps}")
actor_lr_scheduler = CosineAnnealingWarmupLR(
optimizer=actor_optim,
total_steps=args.num_episodes,
warmup_steps=args.warmup_steps,
eta_min=0.1 * args.lr,
)
critic_lr_scheduler = CosineAnnealingWarmupLR(
optimizer=critic_optim,
total_steps=args.num_episodes,
warmup_steps=args.warmup_steps,
eta_min=0.1 * args.lr,
)
# ==============================
# Initialize Booster
# ==============================
if args.plugin == "gemini":
plugin = GeminiPlugin(
precision=args.mixed_precision,
initial_scale=2**16,
max_norm=args.grad_clip,
)
elif args.plugin == "gemini_auto":
plugin = GeminiPlugin(
precision=args.mixed_precision,
placement_policy="auto",
initial_scale=2**16,
max_norm=args.grad_clip,
)
elif args.plugin == "zero2":
plugin = LowLevelZeroPlugin(
stage=2,
precision=args.mixed_precision,
initial_scale=2**16,
max_norm=args.grad_clip,
)
elif args.plugin == "zero2_cpu":
plugin = LowLevelZeroPlugin(
stage=2,
precision=args.mixed_precision,
initial_scale=2**16,
cpu_offload=True,
max_norm=args.grad_clip,
)
elif args.plugin == "3d":
plugin = HybridParallelPlugin(
tp_size=args.tp,
pp_size=1,
zero_stage=0,
precision=args.mixed_precision,
)
custom_plugin = HybridParallelPlugin(
tp_size=args.tp,
pp_size=1,
zero_stage=0,
precision=args.mixed_precision,
custom_policy=booster_policy,
)
else:
raise ValueError(f"Unknown plugin {args.plugin}")
if args.plugin != "3d":
custom_plugin = plugin
actor_booster = Booster(plugin=plugin)
ref_booster = Booster(plugin=plugin)
rm_booster = Booster(plugin=custom_plugin)
critic_booster = Booster(plugin=custom_plugin)
default_dtype = torch.float16 if args.mixed_precision == "fp16" else torch.bfloat16
torch.set_default_dtype(default_dtype)
actor, actor_optim, _, train_prompt_dataloader, actor_lr_scheduler = actor_booster.boost(
model=actor,
optimizer=actor_optim,
lr_scheduler=actor_lr_scheduler,
dataloader=train_prompt_dataloader,
)
critic, critic_optim, _, _, critic_lr_scheduler = critic_booster.boost(
model=critic,
optimizer=critic_optim,
lr_scheduler=critic_lr_scheduler,
dataloader=train_prompt_dataloader,
)
reward_model, _, _, _, _ = rm_booster.boost(model=reward_model, dataloader=train_prompt_dataloader)
ref_model, _, _, _, _ = ref_booster.boost(model=ref_model, dataloader=train_prompt_dataloader)
torch.set_default_dtype(torch.float)
coordinator.print_on_master(f"Booster init max CUDA memory: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB")
coordinator.print_on_master(
f"Booster init max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024:.2f} MB"
)
sampler_start_idx = 0
start_step = 0
if args.rm_checkpoint_path is not None:
if "modeling" in args.rm_checkpoint_path:
rm_booster.load_model(reward_model, args.rm_checkpoint_path)
else:
_, _, _ = load_checkpoint(
load_dir=args.rm_checkpoint_path,
booster=rm_booster,
model=reward_model,
optimizer=None,
lr_scheduler=None,
)
coordinator.print_on_master(f"Loaded reward model checkpoint {args.rm_checkpoint_path}")
if args.checkpoint_path is not None:
if "modeling" in args.checkpoint_path:
actor_booster.load_model(actor, args.checkpoint_path)
ref_booster.load_model(ref_model, args.checkpoint_path)
coordinator.print_on_master(f"Loaded actor and reference model {args.checkpoint_path}")
else:
_, start_step, sampler_start_idx = load_checkpoint(
load_dir=args.checkpoint_path,
booster=actor_booster,
model=actor,
optimizer=actor_optim,
lr_scheduler=actor_lr_scheduler,
)
_, _, _ = load_checkpoint(
load_dir=args.checkpoint_path,
booster=ref_booster,
model=ref_model,
optimizer=critic_optim,
lr_scheduler=critic_lr_scheduler,
)
assert isinstance(train_prompt_dataloader.sampler, StatefulDistributedSampler)
train_prompt_dataloader.sampler.set_start_index(start_index=sampler_start_idx)
coordinator.print_on_master(
f"Loaded actor and reference model checkpoint {args.checkpoint_path} at spisode {start_step}"
)
coordinator.print_on_master(f"Loaded sample at index {sampler_start_idx}")
coordinator.print_on_master(
f"Checkpoint loaded max CUDA memory: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB"
)
coordinator.print_on_master(
f"Checkpoint loaded CUDA memory: {torch.cuda.memory_allocated() / 1024 ** 2:.2f} MB"
)
coordinator.print_on_master(
f"Checkpoint loaded max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024:.2f} MB"
)
if args.critic_checkpoint_path is not None:
if "modeling" in args.critic_checkpoint_path:
critic_booster.load_model(critic, args.critic_checkpoint_path)
else:
_, _, _ = load_checkpoint(
load_dir=args.critic_checkpoint_path,
booster=critic_booster,
model=critic,
optimizer=critic_optim,
lr_scheduler=critic_lr_scheduler,
)
coordinator.print_on_master(f"Loaded critic checkpoint {args.critic_checkpoint_path}")
coordinator.print_on_master(
f"Checkpoint loaded max CUDA memory: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB"
)
coordinator.print_on_master(
f"Checkpoint loaded CUDA memory: {torch.cuda.memory_allocated() / 1024 ** 2:.2f} MB"
)
coordinator.print_on_master(
f"Checkpoint loaded max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024:.2f} MB"
)
# configure trainer
trainer = PPOTrainer(
actor_booster,
critic_booster,
actor,
critic,
reward_model,
ref_model,
actor_optim,
critic_optim,
actor_lr_scheduler,
critic_lr_scheduler,
tokenizer=tokenizer,
stop_token_ids=stop_token_ids,
kl_coef=args.kl_coef,
ptx_coef=args.ptx_coef,
train_batch_size=args.train_batch_size,
buffer_limit=args.num_collect_steps * args.experience_batch_size,
max_length=args.max_length,
max_new_tokens=args.max_seq_len,
use_cache=True,
do_sample=True,
temperature=0.7,
accumulation_steps=args.accumulation_steps,
save_dir=args.save_path,
save_interval=args.save_interval,
top_k=50,
use_tp=args.tp > 1,
offload_inference_models="gemini" not in args.plugin,
callbacks=[performance_evaluator],
coordinator=coordinator,
)
trainer.fit(
num_episodes=args.num_episodes,
num_collect_steps=args.num_collect_steps,
num_update_steps=args.num_update_steps,
prompt_dataloader=train_prompt_dataloader,
pretrain_dataloader=train_pretrain_dataloader,
log_dir=args.log_dir,
use_wandb=args.use_wandb,
)
if args.lora_rank > 0 and args.merge_lora_weights:
from coati.models.lora import LORA_MANAGER
# NOTE: set model to eval to merge LoRA weights
LORA_MANAGER.merge_weights = True
actor.eval()
critic.eval()
# save model checkpoint after fitting on only rank0
coordinator.print_on_master("Start saving final actor model checkpoint")
actor_booster.save_model(actor, os.path.join(trainer.actor_save_dir, "modeling"), shard=True)
coordinator.print_on_master(
f"Saved final actor model checkpoint at episodes {args.num_episodes} at folder {args.save_path}"
)
coordinator.print_on_master("Start saving final critic model checkpoint")
critic_booster.save_model(critic, os.path.join(trainer.critic_save_dir, "modeling"), shard=True)
coordinator.print_on_master(
f"Saved final critic model checkpoint at episodes {args.num_episodes} at folder {args.save_path}"
)
memory_consumption = torch.cuda.max_memory_allocated() / 1024**2
if is_rank_0():
with open("./benchmark_memory_consumption.txt", "a+") as f:
f.write(
f"Model=Opt-{args.pretrain}; lora_rank={args.lora_rank}; plugin={args.plugin}\nMax CUDA memory usage: {memory_consumption:.2f} MB\n"
)
coordinator.print_on_master(f"Max CUDA memory usage: {memory_consumption:.2f} MB")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--prompt_dataset", nargs="+", default=[])
parser.add_argument("--pretrain_dataset", nargs="+", default=[])
parser.add_argument(
"--plugin",
type=str,
default="gemini",
choices=["gemini", "gemini_auto", "zero2", "zero2_cpu", "3d"],
help="Choose which plugin to use",
)
parser.add_argument(
"--conversation_template_config",
type=str,
default=None,
help="Path \
to save conversation template config files.",
)
parser.add_argument("--grad_clip", type=float, default=1.0, help="Gradient clipping value")
parser.add_argument("--weight_decay", type=float, default=0.1, help="Weight decay")
parser.add_argument("--warmup_steps", type=int, default=None, help="Warmup steps")
parser.add_argument("--tokenizer_dir", type=str, default=None)
parser.add_argument("--tp", type=int, default=1)
parser.add_argument("--pretrain", type=str, default=None)
parser.add_argument("--checkpoint_path", type=str, default=None)
parser.add_argument("--critic_checkpoint_path", type=str, default=None)
parser.add_argument("--rm_checkpoint_path", type=str, help="Reward model checkpoint path")
parser.add_argument("--save_path", type=str, default="actor_checkpoint_prompts")
parser.add_argument("--num_episodes", type=int, default=1)
parser.add_argument("--num_collect_steps", type=int, default=2)
parser.add_argument("--num_update_steps", type=int, default=5)
parser.add_argument("--save_interval", type=int, default=1000)
parser.add_argument("--train_batch_size", type=int, default=16)
parser.add_argument("--experience_batch_size", type=int, default=16)
parser.add_argument("--ptx_batch_size", type=int, default=1)
parser.add_argument("--lora_train_bias", type=str, default="none")
parser.add_argument("--mixed_precision", type=str, default="fp16", choices=["fp16", "bf16"], help="Mixed precision")
parser.add_argument("--accumulation_steps", type=int, default=8)
parser.add_argument("--lora_rank", type=int, default=0, help="low-rank adaptation matrices rank")
parser.add_argument("--merge_lora_weights", type=bool, default=True)
parser.add_argument("--lr", type=float, default=9e-6)
parser.add_argument("--critic_lr", type=float, default=9e-6)
parser.add_argument("--kl_coef", type=float, default=0.1)
parser.add_argument("--ptx_coef", type=float, default=0.0)
parser.add_argument("--max_length", type=int, default=512)
parser.add_argument("--max_seq_len", type=int, default=256)
parser.add_argument("--log_dir", default="logs", type=str)
parser.add_argument("--use_wandb", default=False, action="store_true")
parser.add_argument("--grad_checkpoint", default=False, action="store_true")
parser.add_argument("--use_flash_attn", default=False, action="store_true")
args = parser.parse_args()
benchmark_train(args)

View File

@ -0,0 +1,119 @@
#!/usr/bin/env bash
set_n_least_used_CUDA_VISIBLE_DEVICES() {
local n=${1:-"9999"}
echo "GPU Memory Usage:"
local FIRST_N_GPU_IDS=$(nvidia-smi --query-gpu=memory.used --format=csv |
tail -n +2 |
nl -v 0 |
tee /dev/tty |
sort -g -k 2 |
awk '{print $1}' |
head -n $n)
export CUDA_VISIBLE_DEVICES=$(echo $FIRST_N_GPU_IDS | sed 's/ /,/g')
echo "Now CUDA_VISIBLE_DEVICES is set to:"
echo "CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES"
}
set_n_least_used_CUDA_VISIBLE_DEVICES 8
set -xu
NUM_RETRY=3
BASE_DIR=$(dirname $(dirname $(realpath $BASH_SOURCE)))
EXAMPLES_DIR=$BASE_DIR/examples
TEMP_DIR=$BASE_DIR/temp
MODEL_SAVE_PATH=$TEMP_DIR/rlhf_models
MODELS_DIR=$TEMP_DIR/models_config
# To benchmark different models, change the following line
# MODELS=('125m' '350m' '700m' '1.3b' '2.7b' '3.5b' '5.5b' '6.7b' '10b' '13b')
MODELS=('125m')
# To benchmark different strategies, change the following line
# PLUGINS=('zero2', 'zero2_cpu', '3d')
PLUGINS=('zero2')
LORA_RANK=('0')
export OMP_NUM_THREADS=8
rm ./benchmark_memory_consumption.txt
rm ./benchmark_performance_summarization.txt
# install requirements
pip install -r $EXAMPLES_DIR/requirements.txt
random_choice() {
local arr=("$@")
local len=${#arr[@]}
local idx=$((RANDOM % len))
echo ${arr[$idx]}
}
echo "[Test]: testing ppo ..."
SKIPPED_TESTS=(
)
GRAD_CKPTS=('' '--grad_checkpoint')
GRAD_CKPTS=('')
for lora_rank in ${LORA_RANK[@]}; do
for model in ${MODELS[@]}; do
plugins=($(shuf -e "${PLUGINS[@]}"))
for plugin in ${plugins[@]}; do
if [[ " ${SKIPPED_TESTS[*]} " =~ " $model-$plugin-$lora_rank " ]]; then
echo "[Test]: Skipped $model-$plugin-$lora_rank"
continue
elif [[ " ${SKIPPED_TESTS[*]} " =~ " $model-$plugin " ]]; then
echo "[Test]: Skipped $model-$plugin"
continue
fi
pretrain=$model
tokenizer_dir="facebook/opt-125m"
grad_ckpt=$(random_choice "${GRAD_CKPTS[@]}")
tp='1'
if [[ $plugin == "3d" ]]; then
tp='4'
fi
for i in $(seq $NUM_RETRY); do
echo "[Test]: $model-$plugin-$lora_rank, attempt $i"
declare -a prompt_dataset=()
for split in $(seq -f "%05g" 0 9); do
prompt_dataset+=("$TEMP_DIR/benchmark/arrow/part-$split")
done
colossalai run --nproc_per_node 8 --master_port 28547 $BASE_DIR/benchmarks/benchmark_ppo.py \
--pretrain $pretrain \
--tokenizer_dir $tokenizer_dir \
--prompt_dataset ${prompt_dataset[@]} \
--ptx_coef 0 \
--save_path $MODEL_SAVE_PATH \
--conversation_template_config ./Opt.json \
--lora_rank $lora_rank \
--plugin $plugin \
--num_episodes 5 \
--num_collect_steps 1 \
--num_update_steps 1 \
--max_seq_len 128 \
--max_length 512 \
--experience_batch_size 32 \
--train_batch_size 32 \
--accumulation_steps 1 \
--lr 9e-6 \
--mixed_precision "bf16" \
--grad_clip 1.0 \
--use_flash_attn \
--tp $tp \
--lr 2e-5 \
$grad_ckpt
passed=$?
if [ $passed -eq 0 ]; then
rm -rf $MODEL_SAVE_PATH/*
rm -rf $MODELS_DIR/*
break
fi
done
if [ $passed -ne 0 ]; then
echo "[Test]: Failed $model-$plugin-$lora_rank"
exit 1
fi
done
done
done

View File

@ -0,0 +1,16 @@
SAVE_DIR=""
BASE_DIR=$(dirname $(dirname $(realpath $BASH_SOURCE)))
EXAMPLES_DIR=$BASE_DIR/examples
SAVE_DIR=$BASE_DIR/temp/benchmark
rm -rf $SAVE_DIR
python $EXAMPLES_DIR/data_preparation_scripts/prepare_prompt_dataset.py --data_input_dirs "/home/yeanbang/data/dataset/sft_data/alpaca/data_preprocessed/train" \
--conversation_template_config ./Opt.json \
--tokenizer_dir "facebook/opt-125m" \
--data_cache_dir $SAVE_DIR/cache \
--data_jsonl_output_dir $SAVE_DIR/jsonl \
--data_arrow_output_dir $SAVE_DIR/arrow \
--num_samples_per_datafile 30

View File

@ -0,0 +1,26 @@
from .conversation import Conversation, setup_conversation_template
from .loader import (
DataCollatorForPreferenceDataset,
DataCollatorForPromptDataset,
DataCollatorForSupervisedDataset,
StatefulDistributedSampler,
load_tokenized_dataset,
setup_distributed_dataloader,
)
from .tokenization_utils import supervised_tokenize_sft, tokenize_prompt_dataset, tokenize_rlhf
__all__ = [
"tokenize_prompt_dataset",
"DataCollatorForPromptDataset",
"is_rank_0",
"DataCollatorForPreferenceDataset",
"DataCollatorForSupervisedDataset",
"StatefulDistributedSampler",
"load_tokenized_dataset",
"setup_distributed_dataloader",
"supervised_tokenize_pretrain",
"supervised_tokenize_sft",
"tokenize_rlhf",
"setup_conversation_template",
"Conversation",
]

View File

@ -0,0 +1,143 @@
import dataclasses
import json
import os
from typing import Any, Dict, List
import torch.distributed as dist
from transformers import AutoTokenizer, PreTrainedTokenizer
from colossalai.logging import get_dist_logger
logger = get_dist_logger()
@dataclasses.dataclass
class Conversation:
tokenizer: PreTrainedTokenizer
system_message: str
chat_template: str
stop_ids: List[int]
@classmethod
def from_config(cls, tokenizer: PreTrainedTokenizer, config: Dict):
"""
Setup the conversation template from config
"""
tokenizer.chat_template = config["chat_template"]
conv = cls(tokenizer, config["system_message"], config["chat_template"], config["stop_ids"])
conv.clear()
return conv
def clear(self):
self.messages = []
@classmethod
def get_conversation_template_keys(cls):
return ["system_message", "chat_template"]
def __str__(self):
return json.dumps(
{k: self.__dict__[k] for k in self.__dict__ if k not in ["tokenizer", "messages"]},
ensure_ascii=False,
indent=4,
)
def get_prompt(self, length: int = None, add_generation_prompt=False) -> Any:
"""
Retrieves the prompt for the conversation.
Args:
length (int, optional): The number of messages to include in the prompt. Defaults to None.
get_seps_info (bool, optional): Whether to include separator information in the output. Defaults to False.
add_generation_prompt (bool, optional): Whether to add the assistant line start token in generation (for generation only). Defaults to False.
Returns:
str or tuple: The prompt string if get_seps_info is False, otherwise a tuple containing the prompt string and separator information.
"""
if length is None:
length = len(self.messages)
assert length <= len(self.messages)
if self.system_message is not None:
messages = [{"role": "system", "content": self.system_message}] + self.messages[:length]
else:
messages = self.messages[:length]
prompt = self.tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=add_generation_prompt
)
return prompt
def save_prompt(self):
return self.get_prompt()
def append_message(self, role: str, message: str):
"""
Append a message to the conversation.
Args:
role (str): The role of the message sender. Must be either 'user' or 'assistant'.
message (str): The content of the message.
Raises:
AssertionError: If the role is not 'user' or 'assistant'.
"""
assert role in ["user", "assistant"]
self.messages.append({"role": role, "content": message})
def copy(self):
return Conversation(tokenizer=self.tokenizer, chat_template=self.chat_template)
def setup_conversation_template(
tokenizer: PreTrainedTokenizer, chat_template_config: Dict = None, save_path: str = None
) -> Conversation:
"""
Setup the conversation template, if chat_template is given, will replace the default chat_template of the tokenizer
with it. Otherwise, the default chat_template will be used. If the tokenizer doesn't have a default chat_template,
raise error to remind the user to set it manually.
Args:
tokenizer: The tokenizer to use
chat_template_config:
{
"system_message": str The system message to use
"chat_template": str The chat_template to use, if can be a chat_template, a huggingface model path or a local model.
if a huggeface model path or a local model, the chat_template will be loaded from the model's tokenizer's default chat template.
"stop_ids": List[int], the token ids used to terminate generation. You need to provide this for ppo training and generation.
}
"""
if any([s not in chat_template_config.keys() for s in Conversation.get_conversation_template_keys()]):
# Try to automatically set up conversation template, if fail, it throws an error that you need to do it manually
if "system_message" not in chat_template_config:
logger.warning("No system message is provided, will not use system message.")
if "chat_template" not in chat_template_config:
logger.warning("No chat_template is provided, will try to load it from the tokenizer.")
if tokenizer.chat_template != None:
chat_template_config["chat_template"] = tokenizer.chat_template
else:
raise ValueError(
f"Load a tokenizer from {chat_template_config['chat_template']}, which doesn't have a default chat template, please set it manually."
)
else:
try:
tokenizer = AutoTokenizer.from_pretrained(chat_template_config["chat_template"])
if tokenizer.chat_template != None:
chat_template_config["chat_template"] = tokenizer.chat_template
else:
raise ValueError(
f"Load a tokenizer from {chat_template_config['chat_template']}, which doesn't have a default chat template, please set it manually."
)
logger.warning(
f"chat_template is provided as a local model path or huggingface model path, loaded chat_template from \"{chat_template_config['chat_template']}\"."
)
except OSError:
pass
except ValueError as e:
raise ValueError(e)
if not dist.is_initialized() or dist.get_rank() == 0:
os.makedirs(os.path.dirname(save_path), exist_ok=True)
with open(save_path, "w", encoding="utf8") as f:
logger.info(f"Successfully generated a conversation tempalte config, save to {save_path}.")
json.dump(chat_template_config, f, indent=4, ensure_ascii=False)
return Conversation.from_config(tokenizer, chat_template_config)

View File

@ -0,0 +1,383 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Dataloader for sft, dpo, ppo
"""
import math
import os
import random
from dataclasses import dataclass
from typing import Callable, Dict, Iterator, List, Optional, Sequence, Union
import numpy as np
import torch
import torch.distributed as dist
import torch.nn.functional as F
from coati.dataset.utils import chuncate_sequence, pad_to_max_len
from datasets import Dataset as HFDataset
from datasets import dataset_dict, load_from_disk
from torch.distributed import ProcessGroup
from torch.distributed.distributed_c10d import _get_default_group
from torch.utils.data import ConcatDataset, DataLoader, Dataset, DistributedSampler
from transformers.tokenization_utils import PreTrainedTokenizer
DatasetType = Union[Dataset, ConcatDataset, dataset_dict.Dataset]
PathType = Union[str, os.PathLike]
def load_tokenized_dataset(
dataset_paths: Union[PathType, List[PathType]], mode: str = "train", **kwargs
) -> Optional[DatasetType]:
"""
Load pre-tokenized dataset.
Each instance of dataset is a dictionary with
`{'input_ids': List[int], 'labels': List[int], sequence: str}` format.
"""
mode_map = kwargs.get("mode_map", {"train": "train", "dev": "validation", "test": "test"})
assert mode in tuple(mode_map), f"Unsupported mode {mode}, it must be in {tuple(mode_map)}"
if isinstance(dataset_paths, (str, os.PathLike)):
dataset_paths = [dataset_paths]
datasets = [] # `List[datasets.dataset_dict.Dataset]`
for ds_path in dataset_paths:
ds_path = os.path.abspath(ds_path)
assert os.path.exists(ds_path), f"Not existed file path {ds_path}"
ds_dict = load_from_disk(dataset_path=ds_path, keep_in_memory=False)
if isinstance(ds_dict, HFDataset):
datasets.append(ds_dict)
else:
if mode_map[mode] in ds_dict:
datasets.append(ds_dict[mode_map[mode]])
if len(datasets) == 0:
return None
if len(datasets) == 1:
return datasets.pop()
return ConcatDataset(datasets=datasets)
@dataclass
class DataCollatorForSupervisedDataset(object):
"""
Collate instances for supervised dataset.
Each instance is a tokenized dictionary with fields
`input_ids`(List[int]), `labels`(List[int]) and `sequence`(str).
"""
tokenizer: PreTrainedTokenizer
max_length: int = 4096
ignore_index: int = -100
def __call__(self, instances: Sequence[Dict[str, List[int]]]) -> Dict[str, torch.Tensor]:
"""
Args:
instances (`Sequence[Dict[str, List[int]]]`):
Mini-batch samples, each sample is stored in an individual dictionary.
Returns:
(`Dict[str, torch.Tensor]`): Contains the following `torch.Tensor`:
`input_ids`: `torch.Tensor` of shape (bsz, max_len);
`attention_mask`: `torch.BoolTensor` of shape (bsz, max_len);
`labels`: `torch.Tensor` of shape (bsz, max_len), which contains `IGNORE_INDEX`.
"""
assert isinstance(self.tokenizer.pad_token_id, int) and self.tokenizer.pad_token_id >= 0, (
f"`{self.tokenizer.__class__.__name__}.pad_token_id` must be a valid non-negative integer index value, "
f"but now `{self.tokenizer.pad_token_id}`"
)
# `List[torch.Tensor]`
batch_input_ids = [
torch.LongTensor(instance["input_ids"][: self.max_length])
if len(instance["input_ids"]) > self.max_length
else torch.LongTensor(instance["input_ids"])
for instance in instances
]
batch_labels = [
torch.LongTensor(instance["labels"][: self.max_length])
if len(instance["labels"]) > self.max_length
else torch.LongTensor(instance["labels"])
for instance in instances
]
if self.tokenizer.padding_side == "right":
input_ids = torch.nn.utils.rnn.pad_sequence(
sequences=batch_input_ids,
batch_first=True,
padding_value=self.tokenizer.pad_token_id,
) # (bsz, max_len)
labels = torch.nn.utils.rnn.pad_sequence(
sequences=batch_labels,
batch_first=True,
padding_value=self.ignore_index,
) # (bsz, max_len)
# pad to max
to_pad = self.max_length - input_ids.size(1)
input_ids = F.pad(input_ids, (0, to_pad), value=self.tokenizer.pad_token_id)
labels = F.pad(labels, (0, to_pad), value=self.ignore_index)
elif self.tokenizer.padding_side == "left":
reversed_input_ids = [seq.flip(dims=(0,)) for seq in batch_input_ids]
reversed_input_ids = torch.nn.utils.rnn.pad_sequence(
sequences=reversed_input_ids,
batch_first=True,
padding_value=self.tokenizer.pad_token_id,
) # (bsz, max_len)
input_ids = torch.flip(reversed_input_ids, dims=(1,)) # (bsz, max_len)
reversed_labels = [seq.flip(dims=(0,)) for seq in batch_labels]
reversed_labels = torch.nn.utils.rnn.pad_sequence(
sequences=reversed_labels,
batch_first=True,
padding_value=self.ignore_index,
) # (bsz, max_len)
labels = torch.flip(reversed_labels, dims=(1,)) # (bsz, max_len)
else:
raise RuntimeError(
f"`{self.tokenizer.__class__.__name__}.padding_side` can only be `left` or `right`, "
f"but now `{self.tokenizer.padding_side}`"
)
attention_mask = input_ids.ne(self.tokenizer.pad_token_id) # `torch.BoolTensor`, (bsz, max_len)
return dict(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
@dataclass
class DataCollatorForPromptDataset(DataCollatorForSupervisedDataset):
def __call__(self, instances: Sequence[Dict[str, List[int]]]) -> Dict[str, torch.Tensor]:
"""
Args:
instances (`Sequence[Dict[str, List[int]]]`):
Mini-batch samples, each sample is stored in an individual dictionary.
Returns:
(`Dict[str, torch.Tensor]`): Contains the following `torch.Tensor`:
`input_ids`: `torch.Tensor` of shape (bsz, max_len);
`attention_mask`: `torch.BoolTensor` of shape (bsz, max_len);
"""
instances = [{"input_ids": ins["input_ids"], "labels": ins["input_ids"]} for ins in instances]
ret = super().__call__(instances=instances)
input_ids = F.pad(
ret["input_ids"], (self.max_length - ret["input_ids"].size(1), 0), value=self.tokenizer.pad_token_id
)
attention_mask = F.pad(ret["attention_mask"], (self.max_length - ret["attention_mask"].size(1), 0), value=False)
return {"input_ids": input_ids, "attention_mask": attention_mask}
@dataclass
class DataCollatorForPreferenceDataset(object):
"""
Collate instances for supervised dataset.
Each instance is a tokenized dictionary with fields
`input_ids`(List[int]), `labels`(List[int]) and `sequence`(str).
"""
tokenizer: PreTrainedTokenizer
max_length: int = 4096
def __call__(self, instances: Sequence[Dict[str, List[int]]]) -> Dict[str, torch.Tensor]:
"""
Args:
instances (`Sequence[Dict[str, List[int]]]`):
Mini-batch samples, each sample is stored in an individual dictionary.
Returns:
(`Dict[str, torch.Tensor]`): Contains the following `torch.Tensor`:
`input_ids`: `torch.Tensor` of shape (bsz, max_len);
`attention_mask`: `torch.BoolTensor` of shape (bsz, max_len);
`labels`: `torch.Tensor` of shape (bsz, max_len), which contains `IGNORE_INDEX`.
"""
assert isinstance(self.tokenizer.pad_token_id, int) and self.tokenizer.pad_token_id >= 0, (
f"`{self.tokenizer.__class__.__name__}.pad_token_id` must be a valid non-negative integer index value, "
f"but now `{self.tokenizer.pad_token_id}`"
)
(
chosen_input_ids,
chosen_loss_mask, # [batch_size * seq_len]
reject_input_ids,
reject_loss_mask,
) = (
chuncate_sequence([ins["chosen_input_ids"] for ins in instances], self.max_length, torch.int64),
chuncate_sequence([ins["chosen_loss_mask"] for ins in instances], self.max_length, torch.bool),
chuncate_sequence([ins["rejected_input_ids"] for ins in instances], self.max_length, torch.int64),
chuncate_sequence([ins["rejected_loss_mask"] for ins in instances], self.max_length, torch.bool),
)
padding_side = self.tokenizer.padding_side
chosen_attention_mask = [torch.ones_like(seq).bool() for seq in chosen_input_ids]
reject_attention_mask = [torch.ones_like(seq).bool() for seq in reject_input_ids]
(
chosen_input_ids,
chosen_attention_mask,
chosen_loss_mask,
reject_input_ids,
reject_attention_mask,
reject_loss_mask,
) = (
pad_to_max_len(chosen_input_ids, self.max_length, self.tokenizer.pad_token_id, padding_side=padding_side),
pad_to_max_len(chosen_attention_mask, self.max_length, False, padding_side=padding_side),
pad_to_max_len(chosen_loss_mask, self.max_length, False, padding_side=padding_side),
pad_to_max_len(reject_input_ids, self.max_length, self.tokenizer.pad_token_id, padding_side=padding_side),
pad_to_max_len(reject_attention_mask, self.max_length, False, padding_side=padding_side),
pad_to_max_len(reject_loss_mask, self.max_length, False, padding_side=padding_side),
)
return dict(
chosen_input_ids=chosen_input_ids,
chosen_attention_mask=chosen_attention_mask,
chosen_loss_mask=chosen_loss_mask,
reject_input_ids=reject_input_ids,
reject_attention_mask=reject_attention_mask,
reject_loss_mask=reject_loss_mask,
)
class StatefulDistributedSampler(DistributedSampler):
"""
Stateful distributed sampler for multi-stage training.
"""
def __init__(
self,
dataset: DatasetType,
num_replicas: Optional[int] = None,
rank: Optional[int] = None,
shuffle: bool = True,
seed: int = 0,
drop_last: bool = False,
use_tp: Optional[bool] = False,
) -> None:
if not use_tp:
super().__init__(
dataset=dataset,
num_replicas=num_replicas,
rank=rank,
shuffle=shuffle,
seed=seed,
drop_last=drop_last,
)
else:
# adapted from https://github.com/pytorch/pytorch/blob/4979f9c0d72490970e2019bb1d2284f83d93f76b/torch/utils/data/distributed.py#L62
# TODO: support tp_group>1. will fix it later
num_replicas = 1
if rank is None:
rank = dist.get_rank()
if rank < 0:
raise ValueError(f"Invalid rank {rank}, rank should be in the interval [0, 0]")
self.dataset = dataset
self.num_replicas = num_replicas
self.rank = rank
self.epoch = 0
self.drop_last = drop_last
# If the dataset length is evenly divisible by # of replicas, then there
# is no need to drop any data, since the dataset will be split equally.
if self.drop_last and len(self.dataset) % self.num_replicas != 0: # type: ignore[arg-type]
# Split to nearest available length that is evenly divisible.
# This is to ensure each rank receives the same amount of data when
# using this Sampler.
self.num_samples = math.ceil(
(len(self.dataset) - self.num_replicas) / self.num_replicas # type: ignore[arg-type]
)
else:
self.num_samples = math.ceil(len(self.dataset) / self.num_replicas) # type: ignore[arg-type]
self.total_size = self.num_samples * self.num_replicas
self.shuffle = shuffle
self.seed = seed
self.start_index = 0
self.use_tp = use_tp
def __iter__(self) -> Iterator:
if self.use_tp:
# TODO Add support for tp_group not equal to 1
pass
# adpated from https://github.com/pytorch/pytorch/blob/4979f9c0d72490970e2019bb1d2284f83d93f76b/torch/utils/data/distributed.py#L96
if self.shuffle:
# deterministically shuffle based on epoch and seed
g = torch.Generator()
g.manual_seed(self.seed + self.epoch)
indices = torch.randperm(len(self.dataset), generator=g).tolist() # type: ignore[arg-type]
else:
indices = list(range(len(self.dataset))) # type: ignore[arg-type]
if not self.drop_last:
# add extra samples to make it evenly divisible
padding_size = self.total_size - len(indices)
if padding_size <= len(indices):
indices += indices[:padding_size]
else:
indices += (indices * math.ceil(padding_size / len(indices)))[:padding_size]
else:
# remove tail of data to make it evenly divisible.
indices = indices[: self.total_size]
assert len(indices) == self.total_size
# subsample
indices = indices[
: self.total_size : self.num_replicas
] # num_replicas=tp_group=1, we only support tp_group==1 for now
assert len(indices) == self.num_samples
return iter(indices)
else:
iterator = super().__iter__()
indices = list(iterator)
indices = indices[self.start_index :]
return iter(indices)
def __len__(self) -> int:
return self.num_samples - self.start_index
def set_start_index(self, start_index: int) -> None:
self.start_index = start_index
def setup_distributed_dataloader(
dataset: DatasetType,
batch_size: int = 1,
shuffle: bool = False,
seed: int = 1024,
drop_last: bool = False,
pin_memory: bool = False,
num_workers: int = 0,
collate_fn: Callable[[Sequence[Dict[str, Union[str, List[int]]]]], Dict[str, torch.Tensor]] = None,
process_group: Optional[ProcessGroup] = None,
use_tp: Optional[bool] = False,
**kwargs,
) -> DataLoader:
"""
Setup dataloader for distributed training.
"""
_kwargs = kwargs.copy()
process_group = process_group or _get_default_group()
sampler = StatefulDistributedSampler(
dataset=dataset,
num_replicas=process_group.size() if not use_tp else 1,
rank=process_group.rank(),
shuffle=shuffle,
seed=seed,
drop_last=drop_last,
use_tp=use_tp,
)
# Deterministic dataloader
def seed_worker(worker_id: int) -> None:
worker_seed = seed
np.random.seed(worker_seed)
torch.manual_seed(worker_seed)
random.seed(worker_seed)
return DataLoader(
dataset=dataset,
batch_size=batch_size,
sampler=sampler,
num_workers=num_workers,
collate_fn=collate_fn,
pin_memory=pin_memory,
drop_last=drop_last,
worker_init_fn=seed_worker,
**_kwargs,
)

View File

@ -0,0 +1,383 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
tokenization utils for constructing dataset for ppo, dpo, sft, rm
"""
import warnings
from copy import deepcopy
from typing import Any, Dict, List, Union
from coati.dataset.conversation import Conversation
from coati.dataset.utils import split_templated_prompt_into_chunks, tokenize_and_concatenate
from datasets import dataset_dict
from torch.utils.data import ConcatDataset, Dataset
from transformers import PreTrainedTokenizer
from colossalai.logging import get_dist_logger
logger = get_dist_logger()
IGNORE_INDEX = -100
DSType = Union[Dataset, ConcatDataset, dataset_dict.Dataset]
def supervised_tokenize_sft(
data_point: Dict[str, str],
tokenizer: PreTrainedTokenizer,
conversation_template: Conversation = None,
ignore_index: int = None,
max_length: int = 4096,
) -> Dict[str, Union[int, str, List[int]]]:
"""
A tokenization function to tokenize an original pretraining data point as following
and calculate corresponding labels for sft training:
"Something here can be system message[user_line_start]User line[User line end][Assistant line start]Assistant line[Assistant line end]...[Assistant line end]Something here"
^
end_of_system_line_position
Args:
data_point: the data point of the following format
{"messages": [{"from": "human", "content": "xxx"}, {"from": "assistant", "content": "xxx"}]}
tokenizer: the tokenizer whose
conversation_template: the conversation template to apply
ignore_index: the ignore index when calculate loss during training
max_length: the maximum context length
"""
if ignore_index is None:
ignore_index = IGNORE_INDEX
messages = data_point["messages"]
template = deepcopy(conversation_template)
template.messages = []
for mess in messages:
from_str = mess["from"]
if from_str.lower() == "human":
from_str = "user"
elif from_str.lower() == "assistant":
from_str = "assistant"
else:
raise ValueError(f"Unsupported role {from_str.lower()}")
template.append_message(from_str, mess["content"])
if len(template.messages) % 2 != 0:
template.messages = template.messages[0:-1]
# `target_turn_index` is the number of turns which exceeds `max_length - 1` for the first time.
turns = [i for i in range(1, len(messages) // 2 + 1)]
lo, hi = 0, len(turns)
while lo < hi:
mid = (lo + hi) // 2
if max_length - 1 < len(
tokenizer([template.get_prompt(2 * turns[mid] - 1)], add_special_tokens=False)["input_ids"][0]
):
hi = mid
else:
lo = mid + 1
target_turn_index = lo
# The tokenized length for first turn already exceeds `max_length - 1`.
if target_turn_index - 1 < 0:
warnings.warn("The tokenized length for first turn already exceeds `max_length - 1`.")
return dict(
input_ids=None,
labels=None,
inputs_decode=None,
labels_decode=None,
seq_length=None,
seq_category=None,
)
target_turn = turns[target_turn_index - 1]
prompt = template.get_prompt(2 * target_turn)
chunks, require_loss = split_templated_prompt_into_chunks(template.messages[: 2 * target_turn], prompt)
tokenized, starts, ends = tokenize_and_concatenate(tokenizer, chunks, require_loss)
labels = [ignore_index] * len(tokenized)
label_decode = []
for start, end in zip(starts, ends):
if end == len(tokenized):
tokenized = tokenized + [tokenizer.eos_token_id]
labels = labels + [ignore_index]
labels[start : end + 1] = tokenized[start : end + 1]
label_decode.append(tokenizer.decode(tokenized[start : end + 1], skip_special_tokens=False))
if tokenizer.bos_token_id is not None:
if tokenized[0] != tokenizer.bos_token_id:
tokenized = [tokenizer.bos_token_id] + tokenized
labels = [ignore_index] + labels
if tokenizer.eos_token_id is not None:
# Force to add eos token at the end of the tokenized sequence
if tokenized[-1] != tokenizer.eos_token_id:
tokenized = tokenized + [tokenizer.eos_token_id]
labels = labels + [tokenizer.eos_token_id]
else:
labels[-1] = tokenizer.eos_token_id
# For some model without bos/eos may raise the following errors
try:
inputs_decode = tokenizer.decode(tokenized)
except TypeError as e:
raise TypeError(str(e) + f"\nUnable to decode input_ids: {tokenized}")
# Check if all labels are ignored, this may happen when the tokenized length is too long
if labels.count(ignore_index) == len(labels):
return dict(
input_ids=None,
labels=None,
inputs_decode=None,
labels_decode=None,
seq_length=None,
seq_category=None,
)
return dict(
input_ids=tokenized,
labels=labels,
inputs_decode=inputs_decode,
labels_decode=label_decode,
seq_length=len(tokenized),
seq_category=data_point["category"] if "category" in data_point else "None",
)
def tokenize_prompt_dataset(
data_point: Dict[str, str],
tokenizer: PreTrainedTokenizer,
conversation_template: Conversation = None,
ignore_index: int = None,
max_length: int = 4096,
) -> Dict[str, Union[int, str, List[int]]]:
"""
A tokenization function to tokenize an original pretraining data point as following for ppo training:
"Something here can be system message[user_line_start]User line[User line end][Assistant line start]Assistant line[Assistant line end]...[Assistant line start]"
Args:
data_point: the data point of the following format
{"messages": [{"from": "human", "content": "xxx"}, {"from": "assistant", "content": "xxx"}]}
tokenizer: the tokenizer whose
conversation_template: the conversation template to apply
ignore_index: the ignore index when calculate loss during training
max_length: the maximum context length
"""
if ignore_index is None:
ignore_index = IGNORE_INDEX
messages = data_point["messages"]
template = deepcopy(conversation_template)
template.messages = []
for mess in messages:
from_str = mess["from"]
if from_str.lower() == "human":
from_str = "user"
elif from_str.lower() == "assistant":
from_str = "assistant"
else:
raise ValueError(f"Unsupported role {from_str.lower()}")
template.append_message(from_str, mess["content"])
# `target_turn_index` is the number of turns which exceeds `max_length - 1` for the first time.
target_turn = len(template.messages)
if target_turn % 2 != 1:
# exclude the answer if provided. keep only the prompt
target_turn = target_turn - 1
# Prepare data
prompt = template.get_prompt(target_turn, add_generation_prompt=True)
tokenized = tokenizer([prompt], add_special_tokens=False)["input_ids"][0]
if tokenizer.bos_token_id is not None:
if tokenized[0] != tokenizer.bos_token_id:
tokenized = [tokenizer.bos_token_id] + tokenized
# Skip overlength data
if max_length - 1 < len(tokenized):
return dict(
input_ids=None,
inputs_decode=None,
seq_length=None,
seq_category=None,
)
# `inputs_decode` can be used to check whether the tokenization method is true.
return dict(
input_ids=tokenized,
inputs_decode=tokenizer.decode(tokenized),
seq_length=len(tokenized),
seq_category=data_point["category"] if "category" in data_point else "None",
)
def apply_rlhf_data_format(
template: Conversation, tokenizer: Any, context_len: int, mask_out_target_assistant_line_end=False
):
target_turn = int(len(template.messages) / 2)
prompt = template.get_prompt(target_turn * 2)
chunks, require_loss = split_templated_prompt_into_chunks(template.messages[: 2 * target_turn], prompt)
tokenized, starts, ends = tokenize_and_concatenate(tokenizer, chunks, require_loss)
loss_mask = [0] * len(tokenized)
mask_token = tokenizer.eos_token_id or tokenizer.pad_token_id
if mask_token is None:
mask_token = 1 # If the tokenizer doesn't have eos_token or pad_token: Qwen
label_decode = []
for start, end in zip(starts[-1:], ends[-1:]):
# only the last round (chosen/rejected) counts
if end == len(tokenized):
tokenized = tokenized + [tokenizer.eos_token_id]
loss_mask = loss_mask + [1]
loss_mask[start : end + 1] = [1] * len(loss_mask[start : end + 1])
label_decode.append(tokenizer.decode(tokenized[start : end + 1], skip_special_tokens=False))
if tokenizer.bos_token_id is not None:
if tokenized[0] != tokenizer.bos_token_id:
tokenized = [tokenizer.bos_token_id] + tokenized
loss_mask = [0] + loss_mask
if tokenizer.eos_token_id is not None:
# Force to add eos token at the end of the tokenized sequence
if tokenized[-1] != tokenizer.eos_token_id:
tokenized = tokenized + [tokenizer.eos_token_id]
loss_mask = loss_mask + [1]
else:
loss_mask[-1] = 1
return {"input_ids": tokenized, "loss_mask": loss_mask, "label_decode": label_decode}
def tokenize_rlhf(
data_point: Dict[str, str],
tokenizer: PreTrainedTokenizer,
conversation_template: Conversation = None,
ignore_index: int = None,
max_length: int = 4096,
) -> Dict[str, Union[int, str, List[int]]]:
"""
A tokenization function to tokenize an original pretraining data point as following:
{"context": [{"from": "human", "content": "xxx"}, {"from": "assistant", "content": "xxx"}],
"chosen": {"from": "assistant", "content": "xxx"}, "rejected": {"from": "assistant", "content": "xxx"}}
"""
if ignore_index is None:
ignore_index = IGNORE_INDEX
context = data_point["context"]
template = deepcopy(conversation_template)
template.clear()
for mess in context:
from_str = mess["from"]
if from_str.lower() == "human":
from_str = "user"
elif from_str.lower() == "assistant":
from_str = "assistant"
else:
raise ValueError(f"Unsupported role {from_str.lower()}")
if len(template.messages) > 0 and from_str == template.messages[-1]["role"]:
# Concate adjacent message from the same role
template.messages[-1]["content"] = str(template.messages[-1]["content"] + " " + mess["content"])
else:
template.append_message(from_str, mess["content"])
if len(template.messages) % 2 != 1:
warnings.warn(
"Please make sure leading context starts and ends with a line from human\nLeading context: "
+ str(template.messages)
)
return dict(
chosen_input_ids=None,
chosen_loss_mask=None,
chosen_label_decode=None,
rejected_input_ids=None,
rejected_loss_mask=None,
rejected_label_decode=None,
)
round_of_context = int((len(template.messages) - 1) / 2)
assert context[-1]["from"].lower() == "human", "The last message in context should be from human."
chosen = deepcopy(template)
rejected = deepcopy(template)
for round in range(len(data_point["chosen"])):
from_str = data_point["chosen"][round]["from"]
if from_str.lower() == "human":
from_str = "user"
elif from_str.lower() == "assistant":
from_str = "assistant"
else:
raise ValueError(f"Unsupported role {from_str.lower()}")
chosen.append_message(from_str, data_point["chosen"][round]["content"])
for round in range(len(data_point["rejected"])):
from_str = data_point["rejected"][round]["from"]
if from_str.lower() == "human":
from_str = "user"
elif from_str.lower() == "assistant":
from_str = "assistant"
else:
raise ValueError(f"Unsupported role {from_str.lower()}")
rejected.append_message(from_str, data_point["rejected"][round]["content"])
(
chosen_input_ids,
chosen_loss_mask,
chosen_label_decode,
rejected_input_ids,
rejected_loss_mask,
rejected_label_decode,
) = (None, None, None, None, None, None)
if (
len(tokenizer([chosen.get_prompt(len(chosen.messages))], add_special_tokens=False)["input_ids"][0])
<= max_length - 1
and len(tokenizer([rejected.get_prompt(len(rejected.messages))], add_special_tokens=False)["input_ids"][0])
<= max_length - 1
):
chosen_data_packed = apply_rlhf_data_format(chosen, tokenizer, round_of_context)
(chosen_input_ids, chosen_loss_mask, chosen_label_decode) = (
chosen_data_packed["input_ids"],
chosen_data_packed["loss_mask"],
chosen_data_packed["label_decode"],
)
rejected_data_packed = apply_rlhf_data_format(
rejected, tokenizer, round_of_context, mask_out_target_assistant_line_end=True
)
(rejected_input_ids, rejected_loss_mask, rejected_label_decode) = (
rejected_data_packed["input_ids"],
rejected_data_packed["loss_mask"],
rejected_data_packed["label_decode"],
)
# Check if loss mask is all 0s (no loss), this may happen when the tokenized length is too long
if chosen_loss_mask.count(0) == len(chosen_loss_mask) or rejected_loss_mask.count(0) == len(rejected_loss_mask):
return dict(
chosen_input_ids=None,
chosen_loss_mask=None,
chosen_label_decode=None,
rejected_input_ids=None,
rejected_loss_mask=None,
rejected_label_decode=None,
)
return {
"chosen_input_ids": chosen_input_ids,
"chosen_loss_mask": chosen_loss_mask,
"chosen_label_decode": chosen_label_decode,
"rejected_input_ids": rejected_input_ids,
"rejected_loss_mask": rejected_loss_mask,
"rejected_label_decode": rejected_label_decode,
}
else:
return dict(
chosen_input_ids=None,
chosen_loss_mask=None,
chosen_label_decode=None,
rejected_input_ids=None,
rejected_loss_mask=None,
rejected_label_decode=None,
)

View File

@ -0,0 +1,138 @@
import io
import json
from typing import Any, Dict, List
import torch
import torch.distributed as dist
import torch.nn.functional as F
from transformers import PreTrainedTokenizer
def is_rank_0() -> bool:
return not dist.is_initialized() or dist.get_rank() == 0
def _make_r_io_base(f, mode: str):
if not isinstance(f, io.IOBase):
f = open(f, mode=mode)
return f
def jload(f, mode="r"):
"""Load a .json file into a dictionary."""
f = _make_r_io_base(f, mode)
jdict = json.load(f)
f.close()
return jdict
def read_string_by_schema(data: Dict[str, Any], schema: str) -> str:
"""
Read a feild of the dataset be schema
Args:
data: Dict[str, Any]
schema: cascaded feild names seperated by '.'. e.g. person.name.first will access data['person']['name']['first']
"""
keys = schema.split(".")
result = data
for key in keys:
result = result.get(key, None)
if result is None:
return ""
assert isinstance(result, str), f"dataset element is not a string: {result}"
return result
def pad_to_max_len(
sequence: List[torch.Tensor], max_length: int, padding_value: int, batch_first: bool = True, padding_side="left"
):
"""
Args:
sequence: a batch of tensor of shape [batch_size, seq_len] if batch_first==True
"""
if padding_side == "left":
reversed_sequence = [seq.flip(dims=(0,)) for seq in sequence]
padded = torch.nn.utils.rnn.pad_sequence(
sequences=reversed_sequence, batch_first=batch_first, padding_value=padding_value
)
to_pad = max_length - padded.size(1)
padded = F.pad(padded, (0, to_pad), value=padding_value)
return torch.flip(padded, dims=(1,))
elif padding_side == "right":
padded = torch.nn.utils.rnn.pad_sequence(
sequences=sequence, batch_first=batch_first, padding_value=padding_value
)
to_pad = max_length - padded.size(1)
return F.pad(padded, (0, to_pad), value=padding_value)
else:
raise RuntimeError(f"`padding_side` can only be `left` or `right`, " f"but now `{padding_side}`")
def chuncate_sequence(sequence: List[torch.Tensor], max_length: int, dtype: Any):
"""
Args:
sequence: a batch of tensor of shape [batch_size, seq_len] if batch_first==True
"""
return [
torch.Tensor(seq[:max_length]).to(dtype) if len(seq) > max_length else torch.Tensor(seq).to(dtype)
for seq in sequence
]
def find_first_occurrence_subsequence(seq: torch.Tensor, subseq: torch.Tensor, start_index: int = 0) -> int:
if subseq is None:
return 0
for i in range(start_index, len(seq) - len(subseq) + 1):
if torch.all(seq[i : i + len(subseq)] == subseq):
return i
return -1
def tokenize_and_concatenate(tokenizer: PreTrainedTokenizer, text: List[str], require_loss: List[bool]):
"""
Tokenizes a list of texts using the provided tokenizer and concatenates the tokenized outputs.
Args:
tokenizer (PreTrainedTokenizer): The tokenizer to use for tokenization.
text (List[str]): The list of texts to tokenize.
require_loss (List[bool]): A list of boolean values indicating whether each text requires loss calculation.
Returns:
Tuple[List[int], List[int], List[int]]: A tuple containing the concatenated tokenized input ids,
the start positions of loss spans, and the end positions of loss spans.
"""
input_ids = []
loss_starts = []
loss_ends = []
for s, r in zip(text, require_loss):
tokenized = tokenizer(s, add_special_tokens=False)["input_ids"]
if r:
loss_starts.append(len(input_ids))
loss_ends.append(len(input_ids) + len(tokenized))
input_ids.extend(tokenized)
return input_ids, loss_starts, loss_ends
def split_templated_prompt_into_chunks(messages: List[Dict[str, str]], prompt: str):
# Seperate templated prompt into chunks by human/assistant's lines, prepare data for tokenize_and_concatenate
start_idx = 0
chunks = []
require_loss = []
for line in messages:
first_occur = prompt.find(line["content"], start_idx)
if prompt[first_occur - 1] != " ":
chunks.append(prompt[start_idx:first_occur])
chunks.append(prompt[first_occur : first_occur + len(line["content"])])
else:
chunks.append(prompt[start_idx : first_occur - 1])
chunks.append(prompt[first_occur - 1 : first_occur + len(line["content"])])
start_idx = first_occur + len(line["content"])
if line["role"].lower() == "assistant":
require_loss.append(False)
require_loss.append(True)
else:
require_loss.append(False)
require_loss.append(False)
chunks.append(prompt[start_idx:])
require_loss.append(False)
return chunks, require_loss

View File

@ -1,13 +1,16 @@
import random
import warnings
from typing import List
import torch
from coati.experience_maker.base import Experience
from colossalai.logging import get_dist_logger
from .base import ExperienceBuffer
from .utils import BufferItem, make_experience_batch, split_experience_batch
logger = get_dist_logger()
class NaiveExperienceBuffer(ExperienceBuffer):
"""Naive experience buffer class. It stores experience.
@ -35,7 +38,7 @@ class NaiveExperienceBuffer(ExperienceBuffer):
if self.limit > 0:
samples_to_remove = len(self.items) - self.limit
if samples_to_remove > 0:
warnings.warn(f"Experience buffer is full. Removing {samples_to_remove} samples.")
logger.warning(f"Experience buffer is full. Removing {samples_to_remove} samples.")
self.items = self.items[samples_to_remove:]
def clear(self) -> None:
@ -43,6 +46,12 @@ class NaiveExperienceBuffer(ExperienceBuffer):
@torch.no_grad()
def sample(self) -> Experience:
"""
Randomly samples experiences from the buffer.
Returns:
A batch of sampled experiences.
"""
items = random.sample(self.items, self.sample_batch_size)
experience = make_experience_batch(items)
if self.cpu_offload:

Some files were not shown because too many files have changed in this diff Show More