mirror of https://github.com/hpcaitech/ColossalAI
replace the customized dataloader setup with the build-in one
parent
790e1362a6
commit
0d7ff10ea5
|
@ -5,7 +5,6 @@ from .loader import (
|
|||
DataCollatorForSupervisedDataset,
|
||||
StatefulDistributedSampler,
|
||||
load_tokenized_dataset,
|
||||
setup_distributed_dataloader,
|
||||
)
|
||||
from .tokenization_utils import supervised_tokenize_sft, tokenize_prompt_dataset, tokenize_rlhf
|
||||
|
||||
|
@ -17,7 +16,6 @@ __all__ = [
|
|||
"DataCollatorForSupervisedDataset",
|
||||
"StatefulDistributedSampler",
|
||||
"load_tokenized_dataset",
|
||||
"setup_distributed_dataloader",
|
||||
"supervised_tokenize_pretrain",
|
||||
"supervised_tokenize_sft",
|
||||
"tokenize_rlhf",
|
||||
|
|
|
@ -4,22 +4,16 @@
|
|||
Dataloader for sft, dpo, ppo
|
||||
"""
|
||||
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
from dataclasses import dataclass
|
||||
from typing import Callable, Dict, Iterator, List, Optional, Sequence, Union
|
||||
from typing import Dict, Iterator, List, Optional, Sequence, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn.functional as F
|
||||
from coati.dataset.utils import chuncate_sequence, pad_to_max_len
|
||||
from datasets import Dataset as HFDataset
|
||||
from datasets import dataset_dict, load_from_disk
|
||||
from torch.distributed import ProcessGroup
|
||||
from torch.distributed.distributed_c10d import _get_default_group
|
||||
from torch.utils.data import ConcatDataset, DataLoader, Dataset, DistributedSampler
|
||||
from torch.utils.data import ConcatDataset, Dataset, DistributedSampler
|
||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
||||
|
||||
DatasetType = Union[Dataset, ConcatDataset, dataset_dict.Dataset]
|
||||
|
@ -236,159 +230,26 @@ class DataCollatorForPreferenceDataset(object):
|
|||
|
||||
|
||||
class StatefulDistributedSampler(DistributedSampler):
|
||||
"""
|
||||
Stateful distributed sampler for multi-stage training.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dataset: DatasetType,
|
||||
dataset: Dataset,
|
||||
num_replicas: Optional[int] = None,
|
||||
rank: Optional[int] = None,
|
||||
shuffle: bool = True,
|
||||
seed: int = 0,
|
||||
drop_last: bool = False,
|
||||
tp_size: int = 1,
|
||||
sp_size: int = 1,
|
||||
pp_size: int = 1,
|
||||
) -> None:
|
||||
if not tp_size > 1:
|
||||
super().__init__(
|
||||
dataset=dataset,
|
||||
num_replicas=num_replicas,
|
||||
rank=rank,
|
||||
shuffle=shuffle,
|
||||
seed=seed,
|
||||
drop_last=drop_last,
|
||||
)
|
||||
else:
|
||||
# adapted from https://github.com/pytorch/pytorch/blob/4979f9c0d72490970e2019bb1d2284f83d93f76b/torch/utils/data/distributed.py#L62
|
||||
if rank is None:
|
||||
rank = dist.get_rank()
|
||||
dist.get_world_size()
|
||||
# dp_size = world_size // (tp_size * sp_size * pp_size)
|
||||
dp_rank = int(rank / (tp_size * sp_size * pp_size)) # data parallel rank:
|
||||
if rank < 0:
|
||||
raise ValueError(f"Invalid rank {rank}, rank should be in the interval [0, 0]")
|
||||
self.dataset = dataset
|
||||
self.num_replicas = num_replicas
|
||||
self.dp_rank = dp_rank
|
||||
self.rank = rank
|
||||
self.epoch = 0
|
||||
self.drop_last = drop_last
|
||||
# If the dataset length is evenly divisible by # of replicas, then there
|
||||
# is no need to drop any data, since the dataset will be split equally.
|
||||
if self.drop_last and len(self.dataset) % self.num_replicas != 0: # type: ignore[arg-type]
|
||||
# Split to nearest available length that is evenly divisible.
|
||||
# This is to ensure each rank receives the same amount of data when
|
||||
# using this Sampler.
|
||||
self.num_samples = math.ceil(
|
||||
(len(self.dataset) - self.num_replicas) / self.num_replicas # type: ignore[arg-type]
|
||||
)
|
||||
else:
|
||||
self.num_samples = math.ceil(len(self.dataset) / self.num_replicas) # type: ignore[arg-type]
|
||||
self.total_size = self.num_samples * self.num_replicas
|
||||
self.shuffle = shuffle
|
||||
self.seed = seed
|
||||
self.start_index = 0
|
||||
self.tp_size = tp_size
|
||||
super().__init__(dataset, num_replicas, rank, shuffle, seed, drop_last)
|
||||
self.start_index: int = 0
|
||||
|
||||
def __iter__(self) -> Iterator:
|
||||
if self.tp_size > 1:
|
||||
# TODO Add support for tp_group not equal to 1
|
||||
pass
|
||||
# adpated from https://github.com/pytorch/pytorch/blob/4979f9c0d72490970e2019bb1d2284f83d93f76b/torch/utils/data/distributed.py#L96
|
||||
if self.shuffle:
|
||||
# deterministically shuffle based on epoch and seed
|
||||
g = torch.Generator()
|
||||
g.manual_seed(self.seed + self.epoch)
|
||||
indices = torch.randperm(len(self.dataset), generator=g).tolist() # type: ignore[arg-type]
|
||||
else:
|
||||
indices = list(range(len(self.dataset))) # type: ignore[arg-type]
|
||||
|
||||
if not self.drop_last:
|
||||
# add extra samples to make it evenly divisible
|
||||
padding_size = self.total_size - len(indices)
|
||||
if padding_size <= len(indices):
|
||||
indices += indices[:padding_size]
|
||||
else:
|
||||
indices += (indices * math.ceil(padding_size / len(indices)))[:padding_size]
|
||||
else:
|
||||
# remove tail of data to make it evenly divisible.
|
||||
indices = indices[: self.total_size]
|
||||
assert len(indices) == self.total_size
|
||||
|
||||
# subsample
|
||||
indices = indices[
|
||||
self.dp_rank : self.dp_rank + self.total_size : self.num_replicas
|
||||
] # num_replicas=tp_group=1, we only support tp_group==1 for now
|
||||
assert len(indices) == self.num_samples
|
||||
return iter(indices)
|
||||
|
||||
else:
|
||||
iterator = super().__iter__()
|
||||
indices = list(iterator)
|
||||
indices = indices[self.start_index :]
|
||||
return iter(indices)
|
||||
iterator = super().__iter__()
|
||||
indices = list(iterator)
|
||||
indices = indices[self.start_index :]
|
||||
return iter(indices)
|
||||
|
||||
def __len__(self) -> int:
|
||||
return self.num_samples - self.start_index
|
||||
|
||||
def set_start_index(self, start_index: int) -> None:
|
||||
self.start_index = start_index
|
||||
|
||||
|
||||
def setup_distributed_dataloader(
|
||||
dataset: DatasetType,
|
||||
batch_size: int = 1,
|
||||
shuffle: bool = False,
|
||||
seed: int = 1024,
|
||||
drop_last: bool = False,
|
||||
pin_memory: bool = False,
|
||||
num_workers: int = 0,
|
||||
collate_fn: Callable[[Sequence[Dict[str, Union[str, List[int]]]]], Dict[str, torch.Tensor]] = None,
|
||||
process_group: Optional[ProcessGroup] = None,
|
||||
tp_size: Optional[int] = 1,
|
||||
sp_size: Optional[int] = 1,
|
||||
pp_size: Optional[int] = 1,
|
||||
**kwargs,
|
||||
) -> DataLoader:
|
||||
"""
|
||||
Setup dataloader for distributed training.
|
||||
"""
|
||||
_kwargs = kwargs.copy()
|
||||
process_group = process_group or _get_default_group()
|
||||
# world_size = tp_size * pp_size
|
||||
assert (
|
||||
process_group.size() % tp_size == 0
|
||||
), f"process_group.size()={process_group.size()} must be divisible by tp_size={tp_size}"
|
||||
sampler = StatefulDistributedSampler(
|
||||
dataset=dataset,
|
||||
num_replicas=int(process_group.size() / tp_size),
|
||||
rank=process_group.rank(),
|
||||
shuffle=shuffle,
|
||||
seed=seed,
|
||||
drop_last=drop_last,
|
||||
tp_size=tp_size,
|
||||
sp_size=sp_size,
|
||||
pp_size=pp_size,
|
||||
)
|
||||
|
||||
# Deterministic dataloader
|
||||
def seed_worker(worker_id: int) -> None:
|
||||
worker_seed = seed
|
||||
np.random.seed(worker_seed)
|
||||
torch.manual_seed(worker_seed)
|
||||
random.seed(worker_seed)
|
||||
|
||||
return DataLoader(
|
||||
dataset=dataset,
|
||||
batch_size=batch_size,
|
||||
sampler=sampler,
|
||||
num_workers=num_workers,
|
||||
collate_fn=collate_fn,
|
||||
pin_memory=pin_memory,
|
||||
drop_last=drop_last,
|
||||
worker_init_fn=seed_worker,
|
||||
**_kwargs,
|
||||
)
|
||||
|
|
|
@ -55,8 +55,6 @@ def supervised_tokenize_sft(
|
|||
|
||||
for mess in messages:
|
||||
from_str = mess["from"]
|
||||
if from_str is None:
|
||||
print(mess)
|
||||
if from_str.lower() == "human":
|
||||
from_str = "user"
|
||||
elif from_str.lower() == "assistant":
|
||||
|
@ -133,24 +131,20 @@ def supervised_tokenize_sft(
|
|||
labels[-1] = tokenizer.eos_token_id
|
||||
|
||||
# For some model without bos/eos may raise the following errors
|
||||
try:
|
||||
inputs_decode = tokenizer.decode(tokenized)
|
||||
start = 0
|
||||
end = 0
|
||||
label_decode = []
|
||||
for i in range(len(labels)):
|
||||
if labels[i] == ignore_index:
|
||||
if start != end:
|
||||
label_decode.append(tokenizer.decode(labels[start + 1 : i], skip_special_tokens=False))
|
||||
start = i
|
||||
end = i
|
||||
else:
|
||||
end = i
|
||||
if i == len(labels) - 1:
|
||||
label_decode.append(tokenizer.decode(labels[start + 1 :], skip_special_tokens=False))
|
||||
|
||||
except TypeError as e:
|
||||
raise TypeError(str(e) + f"\nUnable to decode input_ids: {tokenized}")
|
||||
inputs_decode = tokenizer.decode(tokenized)
|
||||
start = 0
|
||||
end = 0
|
||||
label_decode = []
|
||||
for i in range(len(labels)):
|
||||
if labels[i] == ignore_index:
|
||||
if start != end:
|
||||
label_decode.append(tokenizer.decode(labels[start + 1 : i], skip_special_tokens=False))
|
||||
start = i
|
||||
end = i
|
||||
else:
|
||||
end = i
|
||||
if i == len(labels) - 1:
|
||||
label_decode.append(tokenizer.decode(labels[start + 1 :], skip_special_tokens=False))
|
||||
|
||||
# Check if all labels are ignored, this may happen when the tokenized length is too long
|
||||
if labels.count(ignore_index) == len(labels):
|
||||
|
|
|
@ -2,7 +2,11 @@
|
|||
"chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
||||
"system_message": "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
|
||||
"stop_ids": [
|
||||
2
|
||||
31007,
|
||||
326,
|
||||
30962,
|
||||
437,
|
||||
31007
|
||||
],
|
||||
"end_of_assistant": "<|im_end|>"
|
||||
}
|
||||
|
|
|
@ -29,6 +29,7 @@
|
|||
- [Alternative Option For RLHF: Direct Preference Optimization](#alternative-option-for-rlhf-direct-preference-optimization)
|
||||
- [DPO Stage 1: Supervised Instruction Tuning](#dpo-training-stage1---supervised-instructs-tuning)
|
||||
- [DPO Stage 2: DPO Training](#dpo-training-stage2---dpo-training)
|
||||
- [List of Supported Models](#)
|
||||
- [Hardware Requirements](#hardware-requirements)
|
||||
- [Inference example](#inference-example)
|
||||
- [Attention](#attention)
|
||||
|
@ -744,6 +745,26 @@ For DPO, we recommend using zero2 or zero2-cpu. We tested the VRAM consumption o
|
|||
- 4 H800 GPUs
|
||||
- zero2, batch size=4, VRAM Usage=67544.47 MB
|
||||
|
||||
## List of Supported Models
|
||||
|
||||
For SFT, we support the following models/series:
|
||||
- Colossal-LLaMA-2
|
||||
- ChatGLM2
|
||||
- ChatGLM3 (only with zero2, zero2_cpu plugin)
|
||||
- Baichuan2
|
||||
- LLaMA2
|
||||
- Qwen1.5-7B-Chat (with transformers==4.39.1)
|
||||
- Yi-1.5
|
||||
|
||||
For PPO and DPO, we theoratically support the following models/series (without guarantee):
|
||||
- Colossal-LLaMA-2 (tested)
|
||||
- ChatGLM2
|
||||
- Baichuan2
|
||||
- LLaMA2 (tested)
|
||||
- Qwen1.5-7B-Chat (with transformers==4.39.1)
|
||||
- Yi-1.5
|
||||
|
||||
*-* The zero2, zero2_cpu plugin also support a wide range of chat models not listed above.
|
||||
|
||||
## Inference example
|
||||
|
||||
|
|
|
@ -1 +1,5 @@
|
|||
172.27.183.199
|
||||
XXX.XX.XXX.XXX # Your master IP
|
||||
XXX.XX.XXX.XXX # Your slave IPs
|
||||
XXX.XX.XXX.XXX # Your slave IPs
|
||||
XXX.XX.XXX.XXX # Your slave IPs
|
||||
XXX.XX.XXX.XXX # Your slave IPs
|
||||
|
|
|
@ -5,12 +5,7 @@ import resource
|
|||
from contextlib import nullcontext
|
||||
|
||||
import torch
|
||||
from coati.dataset import (
|
||||
DataCollatorForPreferenceDataset,
|
||||
StatefulDistributedSampler,
|
||||
load_tokenized_dataset,
|
||||
setup_distributed_dataloader,
|
||||
)
|
||||
from coati.dataset import DataCollatorForPreferenceDataset, StatefulDistributedSampler, load_tokenized_dataset
|
||||
from coati.models import convert_to_lora_module, disable_dropout
|
||||
from coati.trainer import DPOTrainer
|
||||
from coati.utils import load_checkpoint
|
||||
|
@ -174,15 +169,14 @@ def train(args):
|
|||
mode_map = {"train": "train", "valid": "validation", "test": "test"}
|
||||
train_dataset = load_tokenized_dataset(dataset_paths=args.dataset, mode="train", mode_map=mode_map)
|
||||
data_collator = DataCollatorForPreferenceDataset(tokenizer=tokenizer, max_length=args.max_length)
|
||||
train_dataloader = setup_distributed_dataloader(
|
||||
|
||||
train_dataloader = plugin.prepare_dataloader(
|
||||
dataset=train_dataset,
|
||||
batch_size=args.batch_size,
|
||||
shuffle=True,
|
||||
drop_last=True,
|
||||
collate_fn=data_collator,
|
||||
tp_size=plugin.tp_size if hasattr(plugin, "tp_size") else 1,
|
||||
sp_size=plugin.sp_size if hasattr(plugin, "sp_size") else 1,
|
||||
pp_size=plugin.pp_size if hasattr(plugin, "pp_size") else 1,
|
||||
distributed_sampler_cls=StatefulDistributedSampler,
|
||||
)
|
||||
|
||||
num_update_steps_per_epoch = len(train_dataloader) // args.accumulation_steps
|
||||
|
|
|
@ -12,7 +12,6 @@ from coati.dataset import (
|
|||
StatefulDistributedSampler,
|
||||
load_tokenized_dataset,
|
||||
setup_conversation_template,
|
||||
setup_distributed_dataloader,
|
||||
)
|
||||
from coati.models import Critic, RewardModel, convert_to_lora_module, disable_dropout
|
||||
from coati.trainer import PPOTrainer
|
||||
|
@ -209,6 +208,9 @@ def train(args):
|
|||
max_norm=args.grad_clip,
|
||||
)
|
||||
elif args.plugin == "3d":
|
||||
if args.use_flash_attn and (args.tp > 1 or args.pp > 1 or args.sp > 1 or args.enable_sequence_parallelism):
|
||||
logger.warning("Flash attention cannot be used with 3D parallelism for PPO training. Disabling it.")
|
||||
args.use_flash_attn = False
|
||||
plugin = HybridParallelPlugin(
|
||||
tp_size=args.tp,
|
||||
pp_size=args.pp,
|
||||
|
@ -247,29 +249,26 @@ def train(args):
|
|||
mode_map = {"train": "train", "valid": "validation", "test": "test"}
|
||||
train_prompt_dataset = load_tokenized_dataset(dataset_paths=args.prompt_dataset, mode="train", mode_map=mode_map)
|
||||
data_collator = DataCollatorForPromptDataset(tokenizer=tokenizer, max_length=args.max_length - args.max_seq_len)
|
||||
train_prompt_dataloader = setup_distributed_dataloader(
|
||||
|
||||
train_prompt_dataloader = plugin.prepare_dataloader(
|
||||
dataset=train_prompt_dataset,
|
||||
batch_size=args.experience_batch_size,
|
||||
shuffle=True,
|
||||
drop_last=True,
|
||||
collate_fn=data_collator,
|
||||
tp_size=plugin.tp_size if hasattr(plugin, "tp_size") else 1,
|
||||
sp_size=plugin.sp_size if hasattr(plugin, "sp_size") else 1,
|
||||
pp_size=plugin.pp_size if hasattr(plugin, "pp_size") else 1,
|
||||
distributed_sampler_cls=StatefulDistributedSampler,
|
||||
)
|
||||
|
||||
if len(args.ptx_dataset) > 0:
|
||||
train_ptx_dataset = load_tokenized_dataset(dataset_paths=args.ptx_dataset, mode="train", mode_map=mode_map)
|
||||
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer, max_length=args.max_length)
|
||||
train_pretrain_dataloader = setup_distributed_dataloader(
|
||||
train_pretrain_dataloader = plugin.prepare_dataloader(
|
||||
dataset=train_ptx_dataset,
|
||||
batch_size=args.ptx_batch_size,
|
||||
shuffle=True,
|
||||
drop_last=True,
|
||||
collate_fn=data_collator,
|
||||
tp_size=plugin.tp_size if hasattr(plugin, "tp_size") else 1,
|
||||
sp_size=plugin.sp_size if hasattr(plugin, "sp_size") else 1,
|
||||
pp_size=plugin.pp_size if hasattr(plugin, "pp_size") else 1,
|
||||
distributed_sampler_cls=StatefulDistributedSampler,
|
||||
)
|
||||
else:
|
||||
train_pretrain_dataloader = None
|
||||
|
|
|
@ -6,12 +6,7 @@ import resource
|
|||
from contextlib import nullcontext
|
||||
|
||||
import torch
|
||||
from coati.dataset import (
|
||||
DataCollatorForPreferenceDataset,
|
||||
StatefulDistributedSampler,
|
||||
load_tokenized_dataset,
|
||||
setup_distributed_dataloader,
|
||||
)
|
||||
from coati.dataset import DataCollatorForPreferenceDataset, StatefulDistributedSampler, load_tokenized_dataset
|
||||
from coati.models import LogExpLoss, LogSigLoss, RewardModel, convert_to_lora_module
|
||||
from coati.trainer import RewardModelTrainer
|
||||
from coati.utils import load_checkpoint
|
||||
|
@ -169,17 +164,15 @@ def train(args):
|
|||
mode_map = {"train": "train", "valid": "validation", "test": "test"}
|
||||
train_dataset = load_tokenized_dataset(dataset_paths=args.dataset, mode="train", mode_map=mode_map)
|
||||
data_collator = DataCollatorForPreferenceDataset(tokenizer=tokenizer, max_length=args.max_length)
|
||||
train_dataloader = setup_distributed_dataloader(
|
||||
|
||||
train_dataloader = plugin.prepare_dataloader(
|
||||
dataset=train_dataset,
|
||||
batch_size=args.batch_size,
|
||||
shuffle=True,
|
||||
drop_last=True,
|
||||
collate_fn=data_collator,
|
||||
tp_size=plugin.tp_size if hasattr(plugin, "tp_size") else 1,
|
||||
sp_size=plugin.sp_size if hasattr(plugin, "sp_size") else 1,
|
||||
pp_size=plugin.pp_size if hasattr(plugin, "pp_size") else 1,
|
||||
distributed_sampler_cls=StatefulDistributedSampler,
|
||||
)
|
||||
|
||||
num_update_steps_per_epoch = len(train_dataloader) // args.accumulation_steps
|
||||
math.ceil(args.max_epochs * num_update_steps_per_epoch)
|
||||
|
||||
|
|
|
@ -8,7 +8,7 @@ import sys
|
|||
from contextlib import nullcontext
|
||||
|
||||
import torch
|
||||
from coati.dataset import DataCollatorForSupervisedDataset, load_tokenized_dataset, setup_distributed_dataloader
|
||||
from coati.dataset import DataCollatorForSupervisedDataset, StatefulDistributedSampler, load_tokenized_dataset
|
||||
from coati.models import convert_to_lora_module
|
||||
from coati.trainer import SFTTrainer
|
||||
from coati.utils import load_checkpoint
|
||||
|
@ -189,21 +189,15 @@ def train(args):
|
|||
)
|
||||
dataset = load_tokenized_dataset(dataset_paths=args.dataset, mode="train")
|
||||
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer, max_length=args.max_len)
|
||||
train_dataloader = setup_distributed_dataloader(
|
||||
|
||||
train_dataloader = plugin.prepare_dataloader(
|
||||
dataset=dataset,
|
||||
batch_size=args.batch_size,
|
||||
shuffle=True,
|
||||
drop_last=True,
|
||||
collate_fn=data_collator,
|
||||
tp_size=plugin.tp_size if hasattr(plugin, "tp_size") else 1,
|
||||
sp_size=plugin.sp_size if hasattr(plugin, "sp_size") else 1,
|
||||
pp_size=plugin.pp_size if hasattr(plugin, "pp_size") else 1,
|
||||
distributed_sampler_cls=StatefulDistributedSampler,
|
||||
)
|
||||
# print(len(train_dataloader))
|
||||
# for batch in train_dataloader:
|
||||
# print(dist.get_rank(), tokenizer.batch_decode(batch["input_ids"]))
|
||||
# break
|
||||
|
||||
coordinator.print_on_master(
|
||||
f"Max CUDA memory after data loader: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB"
|
||||
)
|
||||
|
|
|
@ -6,8 +6,8 @@ TEST_DATA_DIR=$BASE_DIR/tests/test_data
|
|||
DATA_SAVE_PATH=$BASE_TEMP_DIR/tests
|
||||
CONFIG_DIR=$BASE_DIR/config
|
||||
|
||||
# MODELS=("colossal-llama2" "llama2" "mistral" "chatGLM2" "chatGLM3" "deepseek" "Yi" "baichuan")
|
||||
MODELS=("colossal-llama2" "llama2" "chatGLM2" "chatGLM3" "deepseek" "Yi")
|
||||
MODELS=("colossal-llama2" "llama2" "mistral" "chatGLM2" "chatGLM3" "deepseek" "Yi" "baichuan") # for local test
|
||||
# MODELS=("colossal-llama2" "llama2" "chatGLM2" "chatGLM3" "deepseek" "Yi")
|
||||
|
||||
get_pretrain() {
|
||||
local model=$1
|
||||
|
|
|
@ -30,8 +30,7 @@ MODEL_SAVE_PATH=$TEMP_DIR/rlhf_models
|
|||
MODELS_DIR=$TEMP_DIR/models_config
|
||||
# Skip those tests due to CI tests timeout
|
||||
MODELS=('llama')
|
||||
# ADVANCED_PLUGINS=('pp' 'tp_zero2' 'tp_pp' 'sp_split_gather' 'sp_ring' 'sp_all_to_all' '3d' 'gemini' 'gemini_auto' 'zero2' 'zero2_cpu')
|
||||
ADVANCED_PLUGINS=('tp_zero2' '3d' 'gemini' 'gemini_auto' 'zero2' 'zero2_cpu')
|
||||
ADVANCED_PLUGINS=('sp_split_gather' 'sp_ring' 'sp_all_to_all' 'tp_zero2' '3d' 'gemini' 'gemini_auto' 'zero2' 'zero2_cpu') # pp is still buggy
|
||||
PLUGINS=('3d' 'gemini' 'gemini_auto' 'zero2' 'zero2_cpu')
|
||||
LORA_RANK=('0') # skip to reduce CI execution time, can pass all locally
|
||||
|
||||
|
@ -281,7 +280,7 @@ echo "[Test]: testing ppo ..."
|
|||
|
||||
|
||||
SKIPPED_TESTS=(
|
||||
# llama-3d # 3d plugin doesn't support lora
|
||||
llama-3d # 3d plugin doesn't support lora
|
||||
llama-gemini # gemini doesn't support lora
|
||||
)
|
||||
|
||||
|
@ -359,7 +358,7 @@ for lora_rank in ${LORA_RANK[@]}; do
|
|||
$grad_ckpt \
|
||||
--max_len 400 \
|
||||
--max_seq_len 10 \
|
||||
--use_flash_attn
|
||||
# --use_flash_attn
|
||||
passed=$?
|
||||
if [ $passed -eq 0 ]; then
|
||||
rm -rf $MODEL_SAVE_PATH/*
|
||||
|
|
Loading…
Reference in New Issue