ColossalAI/colossalai/cli/benchmark/utils.py

159 lines
4.8 KiB
Python
Raw Normal View History

import math
import time
import torch
from colossalai.utils import MultiTimer
from colossalai.context import ParallelMode, Config
from typing import List, Dict, Tuple, Callable
def get_time_stamp() -> int:
"""
Return the time stamp for profiling.
Returns:
time_stamp (int): the time given by time.time()
"""
torch.cuda.synchronize()
time_stamp = time.time()
return time_stamp
def get_memory_states() -> Tuple[float]:
"""
Return the memory statistics.
Returns:
max_allocated (float): the allocated CUDA memory
max_cached (float): the cached CUDA memory
"""
max_allocated = torch.cuda.max_memory_allocated() / (1024**3)
max_cached = torch.cuda.max_memory_reserved() / (1024**3)
torch.cuda.reset_peak_memory_stats()
torch.cuda.empty_cache()
return max_allocated, max_cached
def find_all_configs(device_cnt: int) -> List[Dict]:
"""
Find all possible configurations for tensor parallelism
Args:
device_cnt (int): the number of devices
Returns:
config_list (List[Dict]): a list of configurations
"""
def _is_square(num):
# 2D parallel should be implemented with at least 2 devices.
if num <= 1:
return False
return math.floor(math.sqrt(num))**2 == num
def _is_cube(num):
# 3D parallel should be implemented with at least 2 devices.
if num <= 1:
return False
return math.floor(num**(1. / 3.))**3 == num
config_list = []
# add non-parallel config
config = dict(parallel=dict(tensor=dict(size=device_cnt, mode=None)))
config_list.append(config)
# add 1D config
config = dict(parallel=dict(tensor=dict(size=device_cnt, mode='1d')))
config_list.append(config)
# add 2D config only if device_cnt is a square
if _is_square(device_cnt):
config = dict(parallel=dict(tensor=dict(size=device_cnt, mode='2d')))
config_list.append(config)
# check for 2.5D
# iterate over depth
for depth in range(1, device_cnt):
if device_cnt % depth == 0 and _is_square(device_cnt // depth):
config = dict(parallel=dict(tensor=dict(size=device_cnt, mode='2.5d', depth=depth)))
config_list.append(config)
# check for 3D if device_cnt is a cube
if _is_cube(device_cnt):
config = dict(parallel=dict(tensor=dict(size=device_cnt, mode='3d')))
config_list.append(config)
config_list = [Config(cfg) for cfg in config_list]
return config_list
def profile_model(model: torch.nn.Module, warmup_steps: int, profile_steps: int, data_func: Callable,
timer: MultiTimer) -> Tuple[float]:
"""
Profile the forward and backward of a model
Args:
model (torch.nn.Module): a PyTorch model
warmup_steps (int): the number of steps for warmup
profile_steps (int): the number of steps for profiling
data_func (Callable): a function to generate random data
timer (colossalai.utils.Multitimer): a timer instance for time recording
Returns:
fwd_time (float): the average forward time taken by forward pass in second
bwd_time (float): the average backward time taken by forward pass in second
max_allocated (float): the maximum GPU memory allocated in GB
max_cached (float): the maximum GPU memory cached in GB
"""
def _run_step(data):
timer.start('forward')
out = model(data)
timer.stop('forward', keep_in_history=True)
timer.start('backward')
out.mean().backward()
timer.stop('backward', keep_in_history=True)
data_list = [data_func() for _ in range(warmup_steps)]
for data in data_list:
_run_step(data)
timer.reset('forward')
timer.reset('backward')
for _ in range(profile_steps):
data = data_func()
_run_step(data)
max_allocated, max_cached = get_memory_states()
fwd_time = timer.get_timer('forward').get_history_mean()
bwd_time = timer.get_timer('backward').get_history_mean()
return fwd_time, bwd_time, max_allocated, max_cached
def get_batch_data(dim: int, batch_size: int, seq_length: int, mode: ParallelMode) -> torch.Tensor:
"""
Return a random data of shape (batch_size, seq_length, dim) for profiling.
Args:
dim (int): hidden size
batch_size (int): the number of data samples
seq_length (int): the number of tokens
mode (ParallelMode): Colossal-AI ParallelMode enum
Returns:
data (torch.Tensor): random data
"""
if mode in ['2d', '2.5d']:
batch_size = batch_size // 2
dim = dim // 2
elif mode == '3d':
batch_size = batch_size // 4
dim = dim // 2
data = torch.rand(batch_size, seq_length, dim).cuda()
return data