You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/cli/benchmark/utils.py

147 lines
5.7 KiB

import torch
from .simple_model import MLP
from colossalai.utils import Timer, synchronize
from colossalai.core import global_context as gpc
from colossalai.context.parallel_mode import ParallelMode
from argparse import ArgumentParser
BATCH_SIZE = 8
SEQ_LENGTH = 120
HIDDEN_DIM = 1024
ITER_TIMES = 2000
def build_args_parser() -> ArgumentParser:
"""Helper function parsing the command line options."""
parser = ArgumentParser(description="colossal benchmark")
parser.add_argument("--num_gpus",
type=int,
default=-1,
help="Total number of devices to use.")
parser.add_argument("--bs",
type=int,
default=BATCH_SIZE,
help="Batch size of the input tensor.")
parser.add_argument("--seq_len",
type=int,
default=SEQ_LENGTH,
help="Sequence length of the input tensor.")
parser.add_argument("--hid_dim",
type=int,
default=HIDDEN_DIM,
help="Hidden dimension of the input tensor.")
parser.add_argument("--num_steps",
type=int,
default=ITER_TIMES,
help="The number of iteration times.")
return parser
def build_input_tensor(args):
return torch.rand(args.bs, args.seq_len, args.hid_dim)
def build_configs_helper(device_cnt: int):
config_dict = {}
if device_cnt < 2:
return config_dict
if device_cnt < 4:
config_dict["1d"] = dict(parallel=dict(tensor=dict(size=2, mode='1d')))
elif device_cnt < 8:
config_dict["1d"] = dict(parallel=dict(tensor=dict(size=4, mode='1d')))
config_dict["2d"] = dict(parallel=dict(tensor=dict(size=4, mode='2d')))
else:
config_dict["1d"] = dict(parallel=dict(tensor=dict(size=8, mode='1d')))
config_dict["2d"] = dict(parallel=dict(data=2, tensor=dict(size=4, mode='2d')))
config_dict["2p5d"] = dict(parallel=dict(tensor=dict(size=8, mode='2.5d', depth=2)))
config_dict["3d"] = dict(parallel=dict(tensor=dict(size=8, mode='3d')))
return config_dict
def build_configs(args):
total_device_cnt = torch.cuda.device_count()
if args.num_gpus == -1:
config_dict = build_configs_helper(total_device_cnt)
else:
valid_device_cnt = min(args.num_gpus, total_device_cnt)
config_dict = build_configs_helper(valid_device_cnt)
return config_dict
def profile_1d(input_tensor, config, args):
gpc.load_config(config)
gpc.init_parallel_groups()
assert gpc.is_initialized(ParallelMode.PARALLEL_1D)
model = MLP(args.hid_dim).cuda()
input_tensor = input_tensor.cuda()
torch.distributed.broadcast(input_tensor, src=0)
timer = Timer()
iter_times = args.num_steps
timer.start()
for i in range(iter_times):
input_tensor = model(input_tensor)
synchronize()
result_1d = timer.stop()
return result_1d
def profile_2d(input_tensor, config, args):
gpc.load_config(config)
gpc.init_parallel_groups()
assert gpc.is_initialized(ParallelMode.PARALLEL_2D_COL)
assert gpc.is_initialized(ParallelMode.PARALLEL_2D_ROW)
model = MLP(args.hid_dim).cuda()
input_tensor = input_tensor.cuda()
torch.distributed.broadcast(input_tensor, src=0)
input_tensor = torch.chunk(input_tensor, 2, dim=0)[gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL)]
input_tensor = torch.chunk(input_tensor, 2, dim=-1)[gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW)]
timer = Timer()
iter_times = args.num_steps
timer.start()
for i in range(iter_times):
input_tensor = model(input_tensor)
synchronize()
result_2d = timer.stop()
return result_2d
def profile_2p5d(input_tensor, config, args):
gpc.load_config(config)
gpc.init_parallel_groups()
assert gpc.is_initialized(ParallelMode.PARALLEL_2P5D_COL)
assert gpc.is_initialized(ParallelMode.PARALLEL_2P5D_ROW)
assert gpc.is_initialized(ParallelMode.PARALLEL_2P5D_DEP)
model = MLP(args.hid_dim).cuda()
input_tensor = input_tensor.cuda()
torch.distributed.broadcast(input_tensor, src=0)
input_tensor = torch.chunk(input_tensor, 2, dim=0)[gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_DEP)]
input_tensor = torch.chunk(input_tensor, 2, dim=0)[gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL)]
input_tensor = torch.chunk(input_tensor, 2, dim=-1)[gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW)]
timer = Timer()
iter_times = args.num_steps
timer.start()
for i in range(iter_times):
input_tensor = model(input_tensor)
synchronize()
result_2p5d = timer.stop()
return result_2p5d
def profile_3d(input_tensor, config, args):
gpc.load_config(config)
gpc.init_parallel_groups()
assert gpc.is_initialized(ParallelMode.PARALLEL_3D_WEIGHT)
assert gpc.is_initialized(ParallelMode.PARALLEL_3D_INPUT)
assert gpc.is_initialized(ParallelMode.PARALLEL_3D_OUTPUT)
model = MLP(args.hid_dim).cuda()
input_tensor = input_tensor.cuda()
torch.distributed.broadcast(input_tensor, src=0)
input_tensor = torch.chunk(input_tensor, 2, dim=0)[gpc.get_local_rank(ParallelMode.PARALLEL_3D_WEIGHT)]
input_tensor = torch.chunk(input_tensor, 2, dim=0)[gpc.get_local_rank(ParallelMode.PARALLEL_3D_INPUT)]
input_tensor = torch.chunk(input_tensor, 2, dim=-1)[gpc.get_local_rank(ParallelMode.PARALLEL_3D_OUTPUT)]
timer = Timer()
iter_times = args.num_steps
timer.start()
for i in range(iter_times):
input_tensor = model(input_tensor)
synchronize()
result_3d = timer.stop()
return result_3d