mirror of https://github.com/hpcaitech/ColossalAI
[cli] refactored micro-benchmarking cli and added more metrics (#858)
parent
ee222dfbf3
commit
a82da26f7e
|
@ -1,2 +1,28 @@
|
|||
from random import choices
|
||||
import click
|
||||
|
||||
from .utils import *
|
||||
from .run import *
|
||||
from .benchmark import run_benchmark
|
||||
from colossalai.context import Config
|
||||
|
||||
__all__ = ['benchmark']
|
||||
|
||||
|
||||
@click.command()
|
||||
@click.option("-g", "--gpus", type=int, default=None, help="Total number of devices to use.")
|
||||
@click.option("-b", "--batch_size", type=int, default=8, help="Batch size of the input tensor.")
|
||||
@click.option("-s", "--seq_len", type=int, default=512, help="Sequence length of the input tensor.")
|
||||
@click.option("-d", "--dimension", type=int, default=1024, help="Hidden dimension of the input tensor.")
|
||||
@click.option("-w", "--warmup_steps", type=int, default=10, help="The number of warmup steps.")
|
||||
@click.option("-p", "--profile_steps", type=int, default=50, help="The number of profiling steps.")
|
||||
@click.option("-l", "--layers", type=int, default=2)
|
||||
@click.option("-m",
|
||||
"--model",
|
||||
type=click.Choice(['mlp'], case_sensitive=False),
|
||||
default='mlp',
|
||||
help="Select the model to benchmark, currently only supports MLP")
|
||||
def benchmark(gpus: int, batch_size: int, seq_len: int, dimension: int, warmup_steps: int, profile_steps: int,
|
||||
layers: int, model: str):
|
||||
args_dict = locals()
|
||||
args = Config(args_dict)
|
||||
run_benchmark(args)
|
||||
|
|
|
@ -0,0 +1,94 @@
|
|||
import colossalai
|
||||
import click
|
||||
import torch.multiprocessing as mp
|
||||
|
||||
from functools import partial
|
||||
from typing import List, Dict
|
||||
|
||||
from colossalai.context import Config
|
||||
from colossalai.context.random import reset_seeds
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.logging import disable_existing_loggers, get_dist_logger
|
||||
from colossalai.utils import free_port, MultiTimer
|
||||
from colossalai.cli.benchmark.utils import find_all_configs, profile_model, get_batch_data
|
||||
from .models import MLP
|
||||
|
||||
|
||||
def run_benchmark(args: Config) -> None:
|
||||
"""
|
||||
Run benchmarking with torch.multiprocessing.
|
||||
"""
|
||||
|
||||
# sanity checks
|
||||
if args.gpus is None:
|
||||
click.echo("Error: --num_gpus is not given")
|
||||
exit()
|
||||
|
||||
click.echo("=== Benchmarking Parameters ===")
|
||||
for k, v in args.items():
|
||||
click.echo(f'{k}: {v}')
|
||||
click.echo('')
|
||||
|
||||
config_list = find_all_configs(args.gpus)
|
||||
|
||||
avail_ports = [free_port() for _ in range(len(config_list))]
|
||||
run_func = partial(run_dist_profiling,
|
||||
world_size=args.gpus,
|
||||
port_list=avail_ports,
|
||||
config_list=config_list,
|
||||
hyperparams=args)
|
||||
mp.spawn(run_func, nprocs=args.gpus)
|
||||
|
||||
|
||||
def run_dist_profiling(rank: int, world_size: int, port_list: List[int], config_list: List[Dict],
|
||||
hyperparams: Config) -> None:
|
||||
"""
|
||||
A function executed for profiling, this function should be spawn by torch.multiprocessing.
|
||||
|
||||
Args:
|
||||
rank (int): rank of the process
|
||||
world_size (int): the number of processes
|
||||
port_list (List[int]): a list of free ports for initializing distributed networks
|
||||
config_list (List[Dict]): a list of configuration
|
||||
hyperparams (Config): the hyperparameters given by the user
|
||||
|
||||
"""
|
||||
|
||||
# disable logging for clean output
|
||||
disable_existing_loggers()
|
||||
logger = get_dist_logger()
|
||||
logger.set_level('WARNING')
|
||||
|
||||
for config, port in zip(config_list, port_list):
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
timer = MultiTimer()
|
||||
|
||||
if hyperparams.model == 'mlp':
|
||||
model = MLP(dim=hyperparams.dimension, layers=hyperparams.layers)
|
||||
else:
|
||||
if gpc.get_global_rank() == 0:
|
||||
click.echo("Error: Invalid argument for --model")
|
||||
exit()
|
||||
|
||||
data_func = partial(get_batch_data,
|
||||
dim=hyperparams.dimension,
|
||||
batch_size=hyperparams.batch_size,
|
||||
seq_length=hyperparams.seq_len,
|
||||
mode=config.parallel.tensor.mode)
|
||||
|
||||
fwd_time, bwd_time, max_allocated, max_cached = profile_model(model=model,
|
||||
warmup_steps=hyperparams.warmup_steps,
|
||||
profile_steps=hyperparams.profile_steps,
|
||||
data_func=data_func,
|
||||
timer=timer)
|
||||
|
||||
gpc.destroy()
|
||||
reset_seeds()
|
||||
|
||||
if gpc.get_global_rank() == 0:
|
||||
config_str = ', '.join([f'{k}: {v}' for k, v in config.parallel.tensor.items()])
|
||||
click.echo(f"=== {config_str} ===")
|
||||
click.echo(f"Average forward time: {fwd_time}")
|
||||
click.echo(f"Average backward time: {bwd_time}")
|
||||
click.echo(f"Max allocated GPU memory: {max_allocated}")
|
||||
click.echo(f"Max cached GPU memory: {max_cached}\n")
|
|
@ -0,0 +1,17 @@
|
|||
import torch
|
||||
import colossalai.nn as col_nn
|
||||
|
||||
|
||||
class MLP(torch.nn.Module):
|
||||
|
||||
def __init__(self, dim: int, layers: int):
|
||||
super().__init__()
|
||||
self.layers = torch.nn.ModuleList()
|
||||
|
||||
for _ in range(layers):
|
||||
self.layers.append(col_nn.Linear(dim, dim))
|
||||
|
||||
def forward(self, x):
|
||||
for layer in self.layers:
|
||||
x = layer(x)
|
||||
return x
|
|
@ -1,86 +0,0 @@
|
|||
import torch
|
||||
import inspect
|
||||
import os
|
||||
import subprocess
|
||||
import sys
|
||||
|
||||
from colossalai.initialize import launch_from_torch
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.utils import print_rank_0
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.logging import get_dist_logger
|
||||
from colossalai.utils import free_port
|
||||
from colossalai.cli.benchmark import build_args_parser, build_configs, \
|
||||
build_input_tensor, profile_1d, profile_2d, profile_2p5d, profile_3d, \
|
||||
BATCH_SIZE, SEQ_LENGTH, HIDDEN_DIM, ITER_TIMES
|
||||
|
||||
|
||||
def launch(args=None):
|
||||
train_script = inspect.getfile(inspect.currentframe())
|
||||
assert args is not None, "args should not be None"
|
||||
env = os.environ.copy()
|
||||
if args.num_gpus == -1 or args.num_gpus > torch.cuda.device_count():
|
||||
nproc_per_node = torch.cuda.device_count()
|
||||
else:
|
||||
nproc_per_node = args.num_gpus
|
||||
|
||||
train_args = [f"--num_gpus={nproc_per_node}"]
|
||||
if args.bs != BATCH_SIZE:
|
||||
train_args.append(f"--bs={args.bs}")
|
||||
if args.hid_dim != HIDDEN_DIM:
|
||||
train_args.append(f"--hid_dim={args.hid_dim}")
|
||||
if args.num_steps != ITER_TIMES:
|
||||
train_args.append(f"--num_steps={args.num_steps}")
|
||||
if args.seq_len != SEQ_LENGTH:
|
||||
train_args.append(f"--seq_len={args.seq_len}")
|
||||
|
||||
master_port = free_port()
|
||||
if torch.__version__ <= "1.09":
|
||||
cmd = [sys.executable, "-u", "-m",
|
||||
"torch.distributed.launch",
|
||||
f"--nproc_per_node={nproc_per_node}",
|
||||
f"--master_port={master_port}"] + [train_script] + train_args
|
||||
else:
|
||||
cmd = ["torchrun",
|
||||
f"--nproc_per_node={nproc_per_node}",
|
||||
f"--master_port={master_port}"] + [train_script] + train_args
|
||||
|
||||
result = subprocess.Popen(cmd, env=env)
|
||||
result.wait()
|
||||
if result.returncode > 0:
|
||||
sys.exit(result.returncode)
|
||||
|
||||
def main():
|
||||
parser = build_args_parser()
|
||||
args = parser.parse_args()
|
||||
disable_existing_loggers()
|
||||
logger = get_dist_logger()
|
||||
launch_from_torch(config={}, verbose=False)
|
||||
input_tensor = build_input_tensor(args)
|
||||
config_dict = build_configs(args)
|
||||
if len(config_dict) == 0:
|
||||
print_rank_0(f"WARNING: We need at least two devices to profile TP strategies performance.")
|
||||
gpc.destroy()
|
||||
return
|
||||
for parallel_mode, config in config_dict.items():
|
||||
if parallel_mode == "1d":
|
||||
result_1d = profile_1d(input_tensor, config, args)
|
||||
print_rank_0(f"INFO: Totoal time cost in 1D TP is {result_1d}.")
|
||||
if parallel_mode == "2d":
|
||||
result_2d = profile_2d(input_tensor, config, args)
|
||||
print_rank_0(f"INFO: Totoal time cost in 2D TP is {result_2d}.")
|
||||
if parallel_mode == "2p5d":
|
||||
result_2p5d = profile_2p5d(input_tensor, config, args)
|
||||
print_rank_0(f"INFO: Totoal time cost in 2P5D TP is {result_2p5d}.")
|
||||
if parallel_mode == "3d":
|
||||
result_3d = profile_3d(input_tensor, config, args)
|
||||
print_rank_0(f"INFO: Totoal time cost in 3D TP is {result_3d}.")
|
||||
if "2d" not in config_dict:
|
||||
print_rank_0(f"WARNING: To use 2D tensor parallel, you have to provide at least 4 computing devices.")
|
||||
if "2p5d" not in config_dict:
|
||||
print_rank_0(f"WARNING: To use 2P5D tensor parallel, you have to provide at least 8 computing devices.")
|
||||
print_rank_0(f"WARNING: To use 3D tensor parallel, you have to provide at least 8 computing devices.")
|
||||
gpc.destroy()
|
||||
|
||||
if __name__=="__main__":
|
||||
main()
|
|
@ -1,19 +0,0 @@
|
|||
import torch
|
||||
import colossalai
|
||||
import colossalai.nn as col_nn
|
||||
|
||||
class MLP(torch.nn.Module):
|
||||
def __init__(self, dim: int = 256):
|
||||
super().__init__()
|
||||
intermediate_dim = dim * 4
|
||||
self.dense_1 = col_nn.Linear(dim, intermediate_dim)
|
||||
self.activation = torch.nn.GELU()
|
||||
self.dense_2 = col_nn.Linear(intermediate_dim, dim)
|
||||
self.dropout = col_nn.Dropout(0.1)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.dense_1(x)
|
||||
x = self.activation(x)
|
||||
x = self.dense_2(x)
|
||||
x = self.dropout(x)
|
||||
return x
|
|
@ -1,146 +1,154 @@
|
|||
import math
|
||||
import time
|
||||
from grpc import Call
|
||||
import torch
|
||||
from .simple_model import MLP
|
||||
from colossalai.utils import Timer, synchronize
|
||||
|
||||
from colossalai.utils import MultiTimer
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.context.parallel_mode import ParallelMode
|
||||
from argparse import ArgumentParser
|
||||
from colossalai.context import ParallelMode, Config
|
||||
from typing import List, Dict, Tuple, Callable
|
||||
|
||||
BATCH_SIZE = 8
|
||||
SEQ_LENGTH = 120
|
||||
HIDDEN_DIM = 1024
|
||||
ITER_TIMES = 2000
|
||||
|
||||
def build_args_parser() -> ArgumentParser:
|
||||
"""Helper function parsing the command line options."""
|
||||
def get_time_stamp() -> int:
|
||||
"""
|
||||
Return the time stamp for profiling.
|
||||
|
||||
parser = ArgumentParser(description="colossal benchmark")
|
||||
Returns:
|
||||
time_stamp (int): the time given by time.time()
|
||||
"""
|
||||
|
||||
parser.add_argument("--num_gpus",
|
||||
type=int,
|
||||
default=-1,
|
||||
help="Total number of devices to use.")
|
||||
parser.add_argument("--bs",
|
||||
type=int,
|
||||
default=BATCH_SIZE,
|
||||
help="Batch size of the input tensor.")
|
||||
parser.add_argument("--seq_len",
|
||||
type=int,
|
||||
default=SEQ_LENGTH,
|
||||
help="Sequence length of the input tensor.")
|
||||
parser.add_argument("--hid_dim",
|
||||
type=int,
|
||||
default=HIDDEN_DIM,
|
||||
help="Hidden dimension of the input tensor.")
|
||||
parser.add_argument("--num_steps",
|
||||
type=int,
|
||||
default=ITER_TIMES,
|
||||
help="The number of iteration times.")
|
||||
return parser
|
||||
torch.cuda.synchronize()
|
||||
time_stamp = time.time()
|
||||
return time_stamp
|
||||
|
||||
def build_input_tensor(args):
|
||||
return torch.rand(args.bs, args.seq_len, args.hid_dim)
|
||||
|
||||
def build_configs_helper(device_cnt: int):
|
||||
config_dict = {}
|
||||
def get_memory_states() -> Tuple[float]:
|
||||
"""
|
||||
Return the memory statistics.
|
||||
|
||||
if device_cnt < 2:
|
||||
return config_dict
|
||||
Returns:
|
||||
max_allocated (float): the allocated CUDA memory
|
||||
max_cached (float): the cached CUDA memory
|
||||
"""
|
||||
|
||||
max_allocated = torch.cuda.max_memory_allocated() / (1024**3)
|
||||
max_cached = torch.cuda.max_memory_reserved() / (1024**3)
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
torch.cuda.empty_cache()
|
||||
return max_allocated, max_cached
|
||||
|
||||
|
||||
def find_all_configs(device_cnt: int) -> List[Dict]:
|
||||
"""
|
||||
Find all possible configurations for tensor parallelism
|
||||
|
||||
Args:
|
||||
device_cnt (int): the number of devices
|
||||
|
||||
Returns:
|
||||
config_list (List[Dict]): a list of configurations
|
||||
"""
|
||||
|
||||
def _is_square(num):
|
||||
return math.floor(math.sqrt(num))**2 == num
|
||||
|
||||
def _is_cube(num):
|
||||
return math.floor(num**(1. / 3.))**3 == num
|
||||
|
||||
config_list = []
|
||||
|
||||
# add non-parallel config
|
||||
config = dict(parallel=dict(tensor=dict(size=device_cnt, mode=None)))
|
||||
config_list.append(config)
|
||||
|
||||
# add 1D config
|
||||
config = dict(parallel=dict(tensor=dict(size=device_cnt, mode='1d')))
|
||||
config_list.append(config)
|
||||
|
||||
# add 1D config only if device_cnt is a square
|
||||
if _is_square(device_cnt):
|
||||
config = dict(parallel=dict(tensor=dict(size=device_cnt, mode='2d')))
|
||||
config_list.append(config)
|
||||
|
||||
# check for 2.5D
|
||||
# iterate over depth
|
||||
for depth in range(1, device_cnt):
|
||||
if device_cnt % depth == 0 and _is_square(device_cnt // depth):
|
||||
config = dict(parallel=dict(tensor=dict(size=device_cnt, mode='2.5d', depth=depth)))
|
||||
config_list.append(config)
|
||||
|
||||
# check for 3D if device_cnt is a cube
|
||||
if _is_cube(device_cnt):
|
||||
config = dict(parallel=dict(tensor=dict(size=device_cnt, mode='3d')))
|
||||
config_list.append(config)
|
||||
|
||||
config_list = [Config(cfg) for cfg in config_list]
|
||||
return config_list
|
||||
|
||||
|
||||
def profile_model(model: torch.nn.Module, warmup_steps: int, profile_steps: int, data_func: Callable,
|
||||
timer: MultiTimer) -> Tuple[float]:
|
||||
"""
|
||||
Profile the forward and backward of a model
|
||||
|
||||
Args:
|
||||
model (torch.nn.Module): a PyTorch model
|
||||
warmup_steps (int): the number of steps for warmup
|
||||
profile_steps (int): the number of steps for profiling
|
||||
data_func (Callable): a function to generate random data
|
||||
timer (colossalai.utils.Multitimer): a timer instance for time recording
|
||||
|
||||
if device_cnt < 4:
|
||||
config_dict["1d"] = dict(parallel=dict(tensor=dict(size=2, mode='1d')))
|
||||
elif device_cnt < 8:
|
||||
config_dict["1d"] = dict(parallel=dict(tensor=dict(size=4, mode='1d')))
|
||||
config_dict["2d"] = dict(parallel=dict(tensor=dict(size=4, mode='2d')))
|
||||
else:
|
||||
config_dict["1d"] = dict(parallel=dict(tensor=dict(size=8, mode='1d')))
|
||||
config_dict["2d"] = dict(parallel=dict(data=2, tensor=dict(size=4, mode='2d')))
|
||||
config_dict["2p5d"] = dict(parallel=dict(tensor=dict(size=8, mode='2.5d', depth=2)))
|
||||
config_dict["3d"] = dict(parallel=dict(tensor=dict(size=8, mode='3d')))
|
||||
|
||||
return config_dict
|
||||
Returns:
|
||||
fwd_time (float): the average forward time taken by forward pass in second
|
||||
bwd_time (float): the average backward time taken by forward pass in second
|
||||
max_allocated (float): the maximum GPU memory allocated in GB
|
||||
max_cached (float): the maximum GPU memory cached in GB
|
||||
"""
|
||||
|
||||
def build_configs(args):
|
||||
total_device_cnt = torch.cuda.device_count()
|
||||
if args.num_gpus == -1:
|
||||
config_dict = build_configs_helper(total_device_cnt)
|
||||
else:
|
||||
valid_device_cnt = min(args.num_gpus, total_device_cnt)
|
||||
config_dict = build_configs_helper(valid_device_cnt)
|
||||
return config_dict
|
||||
def _run_step(data):
|
||||
timer.start('forward')
|
||||
out = model(data)
|
||||
timer.stop('forward', keep_in_history=True)
|
||||
timer.start('backward')
|
||||
out.mean().backward()
|
||||
timer.stop('backward', keep_in_history=True)
|
||||
|
||||
def profile_1d(input_tensor, config, args):
|
||||
gpc.load_config(config)
|
||||
gpc.init_parallel_groups()
|
||||
assert gpc.is_initialized(ParallelMode.PARALLEL_1D)
|
||||
model = MLP(args.hid_dim).cuda()
|
||||
input_tensor = input_tensor.cuda()
|
||||
torch.distributed.broadcast(input_tensor, src=0)
|
||||
timer = Timer()
|
||||
iter_times = args.num_steps
|
||||
timer.start()
|
||||
for i in range(iter_times):
|
||||
input_tensor = model(input_tensor)
|
||||
synchronize()
|
||||
result_1d = timer.stop()
|
||||
return result_1d
|
||||
data_list = [data_func() for _ in range(warmup_steps)]
|
||||
for data in data_list:
|
||||
_run_step(data)
|
||||
timer.reset('forward')
|
||||
timer.reset('backward')
|
||||
|
||||
def profile_2d(input_tensor, config, args):
|
||||
gpc.load_config(config)
|
||||
gpc.init_parallel_groups()
|
||||
assert gpc.is_initialized(ParallelMode.PARALLEL_2D_COL)
|
||||
assert gpc.is_initialized(ParallelMode.PARALLEL_2D_ROW)
|
||||
model = MLP(args.hid_dim).cuda()
|
||||
input_tensor = input_tensor.cuda()
|
||||
torch.distributed.broadcast(input_tensor, src=0)
|
||||
input_tensor = torch.chunk(input_tensor, 2, dim=0)[gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL)]
|
||||
input_tensor = torch.chunk(input_tensor, 2, dim=-1)[gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW)]
|
||||
timer = Timer()
|
||||
iter_times = args.num_steps
|
||||
timer.start()
|
||||
for i in range(iter_times):
|
||||
input_tensor = model(input_tensor)
|
||||
synchronize()
|
||||
result_2d = timer.stop()
|
||||
return result_2d
|
||||
for _ in range(profile_steps):
|
||||
data = data_func()
|
||||
_run_step(data)
|
||||
|
||||
def profile_2p5d(input_tensor, config, args):
|
||||
gpc.load_config(config)
|
||||
gpc.init_parallel_groups()
|
||||
assert gpc.is_initialized(ParallelMode.PARALLEL_2P5D_COL)
|
||||
assert gpc.is_initialized(ParallelMode.PARALLEL_2P5D_ROW)
|
||||
assert gpc.is_initialized(ParallelMode.PARALLEL_2P5D_DEP)
|
||||
model = MLP(args.hid_dim).cuda()
|
||||
input_tensor = input_tensor.cuda()
|
||||
torch.distributed.broadcast(input_tensor, src=0)
|
||||
input_tensor = torch.chunk(input_tensor, 2, dim=0)[gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_DEP)]
|
||||
input_tensor = torch.chunk(input_tensor, 2, dim=0)[gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL)]
|
||||
input_tensor = torch.chunk(input_tensor, 2, dim=-1)[gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW)]
|
||||
timer = Timer()
|
||||
iter_times = args.num_steps
|
||||
timer.start()
|
||||
for i in range(iter_times):
|
||||
input_tensor = model(input_tensor)
|
||||
synchronize()
|
||||
result_2p5d = timer.stop()
|
||||
return result_2p5d
|
||||
max_allocated, max_cached = get_memory_states()
|
||||
fwd_time = timer.get_timer('forward').get_history_mean()
|
||||
bwd_time = timer.get_timer('backward').get_history_mean()
|
||||
return fwd_time, bwd_time, max_allocated, max_cached
|
||||
|
||||
def profile_3d(input_tensor, config, args):
|
||||
gpc.load_config(config)
|
||||
gpc.init_parallel_groups()
|
||||
assert gpc.is_initialized(ParallelMode.PARALLEL_3D_WEIGHT)
|
||||
assert gpc.is_initialized(ParallelMode.PARALLEL_3D_INPUT)
|
||||
assert gpc.is_initialized(ParallelMode.PARALLEL_3D_OUTPUT)
|
||||
model = MLP(args.hid_dim).cuda()
|
||||
input_tensor = input_tensor.cuda()
|
||||
torch.distributed.broadcast(input_tensor, src=0)
|
||||
input_tensor = torch.chunk(input_tensor, 2, dim=0)[gpc.get_local_rank(ParallelMode.PARALLEL_3D_WEIGHT)]
|
||||
input_tensor = torch.chunk(input_tensor, 2, dim=0)[gpc.get_local_rank(ParallelMode.PARALLEL_3D_INPUT)]
|
||||
input_tensor = torch.chunk(input_tensor, 2, dim=-1)[gpc.get_local_rank(ParallelMode.PARALLEL_3D_OUTPUT)]
|
||||
timer = Timer()
|
||||
iter_times = args.num_steps
|
||||
timer.start()
|
||||
for i in range(iter_times):
|
||||
input_tensor = model(input_tensor)
|
||||
synchronize()
|
||||
result_3d = timer.stop()
|
||||
return result_3d
|
||||
|
||||
def get_batch_data(dim: int, batch_size: int, seq_length: int, mode: ParallelMode) -> torch.Tensor:
|
||||
"""
|
||||
Return a random data of shape (batch_size, seq_length, dim) for profiling.
|
||||
|
||||
Args:
|
||||
dim (int): hidden size
|
||||
batch_size (int): the number of data samples
|
||||
seq_length (int): the number of tokens
|
||||
mode (ParallelMode): Colossal-AI ParallelMode enum
|
||||
|
||||
Returns:
|
||||
data (torch.Tensor): random data
|
||||
"""
|
||||
|
||||
if mode in ['2d', '2.5d']:
|
||||
batch_size = batch_size // 2
|
||||
dim = dim // 2
|
||||
elif mode == '3d':
|
||||
batch_size = batch_size // 4
|
||||
dim = dim // 2
|
||||
|
||||
data = torch.rand(batch_size, seq_length, dim).cuda()
|
||||
return data
|
||||
|
|
|
@ -1,8 +1,7 @@
|
|||
import click
|
||||
from .launcher import run
|
||||
from .check import check
|
||||
from colossalai.cli.benchmark.utils import BATCH_SIZE, SEQ_LENGTH, HIDDEN_DIM, ITER_TIMES
|
||||
from colossalai.cli.benchmark.run import launch as col_benchmark
|
||||
from .benchmark import benchmark
|
||||
|
||||
|
||||
class Arguments():
|
||||
|
@ -17,18 +16,6 @@ def cli():
|
|||
pass
|
||||
|
||||
|
||||
@click.command()
|
||||
@click.option("--num_gpus", type=int, default=-1)
|
||||
@click.option("--bs", type=int, default=BATCH_SIZE)
|
||||
@click.option("--seq_len", type=int, default=SEQ_LENGTH)
|
||||
@click.option("--hid_dim", type=int, default=HIDDEN_DIM)
|
||||
@click.option("--num_steps", type=int, default=ITER_TIMES)
|
||||
def benchmark(num_gpus, bs, seq_len, hid_dim, num_steps):
|
||||
args_dict = locals()
|
||||
args = Arguments(args_dict)
|
||||
col_benchmark(args)
|
||||
|
||||
|
||||
cli.add_command(run)
|
||||
cli.add_command(check)
|
||||
cli.add_command(benchmark)
|
||||
|
|
Loading…
Reference in New Issue