2022-11-07 08:15:35 +00:00
|
|
|
from typing import Callable, Dict, List, Tuple, Union
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
|
|
|
|
MemoryCost,
|
|
|
|
OperationData,
|
|
|
|
OperationDataType,
|
|
|
|
ShardingStrategy,
|
|
|
|
StrategiesVector,
|
|
|
|
TrainCycleItem,
|
|
|
|
)
|
|
|
|
from colossalai.fx.profiler.memory_utils import activation_size
|
|
|
|
from colossalai.fx.profiler.opcount import flop_mapping
|
|
|
|
from colossalai.tensor.sharding_spec import ShardingSpec
|
|
|
|
|
|
|
|
from ..registry import meta_register
|
|
|
|
|
|
|
|
__all__ = ['convnd_meta_info']
|
|
|
|
|
|
|
|
|
|
|
|
@meta_register.register(torch.nn.Conv1d)
|
|
|
|
@meta_register.register(torch.nn.Conv2d)
|
|
|
|
@meta_register.register(torch.nn.Conv3d)
|
2022-12-06 02:17:57 +00:00
|
|
|
@meta_register.register(torch.nn.functional.conv1d)
|
|
|
|
@meta_register.register(torch.nn.functional.conv2d)
|
|
|
|
@meta_register.register(torch.nn.functional.conv3d)
|
2022-11-16 15:12:31 +00:00
|
|
|
def convnd_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
|
2022-11-07 08:15:35 +00:00
|
|
|
"""torch.nn.Conv1d, torch.nn.Conv2d, torch.nn.Conv3d meta info generator
|
|
|
|
The atens graph of torch.nn.Convnd with bias is
|
|
|
|
graph():
|
|
|
|
%input_2 : [#users=2] = placeholder[target=placeholder](default=)
|
|
|
|
%convolution_default : [#users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%input_2, None, None, [None, None, None], [None, None, None], [None, None, None], None, [None, None, None], None), kwargs = {})
|
|
|
|
%zeros_like_default : [#users=1] = call_function[target=torch.ops.aten.zeros_like.default](args = (%convolution_default,), kwargs = {dtype: None, layout: None, device: None, pin_memory: None})
|
|
|
|
%detach_default : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%input_2,), kwargs = {})
|
|
|
|
%convolution_backward_default : [#users=3] = call_function[target=torch.ops.aten.convolution_backward.default](args = (%zeros_like_default, %detach_default, None, [None], [None, None, None], [None, None, None], [None, None, None], None, [None, None, None], None, [None, None, None]), kwargs = {})
|
|
|
|
%detach_default_1 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%convolution_backward_default,), kwargs = {})
|
|
|
|
%detach_default_2 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_1,), kwargs = {})
|
|
|
|
%detach_default_3 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%convolution_backward_default,), kwargs = {})
|
|
|
|
%detach_default_4 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_3,), kwargs = {})
|
|
|
|
%detach_default_5 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%convolution_backward_default,), kwargs = {})
|
|
|
|
%detach_default_6 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_5,), kwargs = {})
|
|
|
|
|
|
|
|
The atens graph of torch.nn.Convnd without bias is
|
|
|
|
graph():
|
|
|
|
%input_2 : [#users=2] = placeholder[target=placeholder](default=)
|
|
|
|
%convolution_default : [#users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%input_2, None, None, [None, None], [None, None], [None, None], None, [None, None], None), kwargs = {})
|
|
|
|
%zeros_like_default : [#users=1] = call_function[target=torch.ops.aten.zeros_like.default](args = (%convolution_default,), kwargs = {dtype: None, layout: None, device: None, pin_memory: None})
|
|
|
|
%detach_default : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%input_2,), kwargs = {})
|
|
|
|
%convolution_backward_default : [#users=2] = call_function[target=torch.ops.aten.convolution_backward.default](args = (%zeros_like_default, %detach_default, None, [None], [None, None], [None, None], [None, None], None, [None, None], None, [None, None, None]), kwargs = {})
|
|
|
|
%detach_default_1 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%convolution_backward_default,), kwargs = {})
|
|
|
|
%detach_default_2 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_1,), kwargs = {})
|
|
|
|
%detach_default_3 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%convolution_backward_default,), kwargs = {})
|
|
|
|
%detach_default_4 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_3,), kwargs = {})
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: compute cost, memory cost and forward inputs
|
|
|
|
"""
|
|
|
|
|
|
|
|
has_bias: bool = False
|
2022-12-20 02:31:22 +00:00
|
|
|
input_tensor = args[0].data
|
2022-11-07 08:15:35 +00:00
|
|
|
output_tensor = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data
|
2022-12-20 02:31:22 +00:00
|
|
|
if len(args) == 4:
|
|
|
|
weight_tensors = [args[1].data, args[3].data]
|
|
|
|
else:
|
|
|
|
weight_tensors = [args[1].data]
|
2022-11-07 08:15:35 +00:00
|
|
|
|
|
|
|
# check if conv has bias
|
2022-12-06 02:17:57 +00:00
|
|
|
if len(weight_tensors) > 1:
|
2022-11-07 08:15:35 +00:00
|
|
|
has_bias = True
|
2022-12-06 02:17:57 +00:00
|
|
|
# bias tensor's shape only has one dimension
|
|
|
|
if len(weight_tensors[0].shape) == 1:
|
|
|
|
bias_tensor, weight_tensor = weight_tensors
|
|
|
|
else:
|
|
|
|
weight_tensor, bias_tensor = weight_tensors
|
|
|
|
|
|
|
|
else:
|
|
|
|
weight_tensor = weight_tensors[0]
|
2022-11-07 08:15:35 +00:00
|
|
|
|
|
|
|
# construct input args for forward
|
|
|
|
fwd_args = [None] * 9
|
|
|
|
|
|
|
|
# weight and input
|
|
|
|
fwd_args[0] = input_tensor
|
|
|
|
fwd_args[1] = weight_tensor
|
|
|
|
fwd_args[2] = bias_tensor if has_bias else None
|
|
|
|
|
|
|
|
# transpose indicator should be set to False
|
|
|
|
fwd_args[6] = False
|
|
|
|
|
|
|
|
# construct input args for backward
|
|
|
|
bwd_args = [None] * 11
|
|
|
|
|
|
|
|
# weight and input
|
|
|
|
bwd_args[0] = output_tensor
|
|
|
|
bwd_args[1] = input_tensor
|
|
|
|
bwd_args[2] = weight_tensor
|
|
|
|
bwd_args[-1] = [True, True, True] if has_bias else [True, True, False]
|
|
|
|
|
|
|
|
# calculate cost
|
|
|
|
# the fwd op with compute cost is convolution.default
|
|
|
|
# the bwd op with compute cost is convolution_backward.default
|
|
|
|
|
|
|
|
# calculate compute cost
|
|
|
|
fwd_compute_cost = flop_mapping[torch.ops.aten.convolution.default](fwd_args, (output_tensor,))
|
|
|
|
bwd_compute_cost = flop_mapping[torch.ops.aten.convolution_backward.default](bwd_args, (input_tensor, weight_tensor, bias_tensor)) if has_bias else \
|
|
|
|
flop_mapping[torch.ops.aten.convolution_backward.default](bwd_args, (input_tensor, weight_tensor))
|
|
|
|
compute_cost = TrainCycleItem(fwd=fwd_compute_cost, bwd=bwd_compute_cost, total=fwd_compute_cost + bwd_compute_cost)
|
|
|
|
|
|
|
|
# calculate memory cost
|
|
|
|
# TODO: use profiler to check conv temp memory
|
2022-12-04 07:00:16 +00:00
|
|
|
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
|
|
|
|
fwd_memory_cost = MemoryCost(
|
|
|
|
activation=activation_size([input_tensor, output_tensor]),
|
|
|
|
parameter=activation_size([weight_tensor, bias_tensor]) if has_bias else activation_size(weight_tensor),
|
|
|
|
temp=0,
|
|
|
|
buffer=0)
|
|
|
|
|
|
|
|
bwd_memory_cost = MemoryCost(
|
|
|
|
activation=activation_size([input_tensor, weight_tensor, bias_tensor])
|
|
|
|
if has_bias else activation_size([input_tensor, weight_tensor]),
|
|
|
|
parameter=activation_size([weight_tensor, bias_tensor]) if has_bias else activation_size(weight_tensor),
|
|
|
|
temp=0,
|
|
|
|
buffer=0)
|
2022-11-07 08:15:35 +00:00
|
|
|
|
|
|
|
# total cost is the sum of forward and backward cost
|
|
|
|
total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation,
|
|
|
|
parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter)
|
|
|
|
|
|
|
|
memory_cost = TrainCycleItem(fwd=fwd_memory_cost, bwd=bwd_memory_cost, total=total_cost)
|
|
|
|
|
|
|
|
# store fwd_in
|
|
|
|
fwd_in = [input_tensor]
|
|
|
|
|
|
|
|
return compute_cost, memory_cost, fwd_in
|