2022-04-21 03:42:37 +00:00
|
|
|
import torch
|
2022-04-21 06:15:48 +00:00
|
|
|
from colossalai.tensor.op_wrapper import colo_op_impl
|
|
|
|
from colossalai.tensor.colo_tensor import ColoTensor
|
2022-04-24 05:43:12 +00:00
|
|
|
from colossalai.context import ParallelMode
|
|
|
|
from colossalai.nn.layer.parallel_1d._utils import split_forward_gather_backward, reduce_input
|
2022-04-24 06:12:45 +00:00
|
|
|
from colossalai.nn.layer.utils import divide
|
|
|
|
from colossalai.core import global_context as gpc
|
2022-04-21 03:42:37 +00:00
|
|
|
from packaging import version
|
2022-04-24 10:30:20 +00:00
|
|
|
from colossalai.utils.cuda import get_current_device
|
2022-04-21 03:42:37 +00:00
|
|
|
|
2022-04-21 06:15:48 +00:00
|
|
|
@colo_op_impl(torch.nn.functional.linear)
|
|
|
|
def colo_linear(types, args, kwargs, pg):
|
2022-04-21 03:42:37 +00:00
|
|
|
"""Handles ``__torch_function__`` dispatch for ``torch.nn.functional.linear``.
|
|
|
|
This method computes a linear.
|
|
|
|
"""
|
|
|
|
input_tensor = args[0]
|
|
|
|
weight = args[1]
|
|
|
|
|
|
|
|
if version.parse(torch.__version__) > version.parse("1.11.0"):
|
|
|
|
if len(args) == 3:
|
|
|
|
bias = args[2]
|
|
|
|
else:
|
|
|
|
bias = None
|
|
|
|
else:
|
|
|
|
bias = kwargs.get('bias', None)
|
2022-04-24 05:43:12 +00:00
|
|
|
|
2022-04-21 09:18:56 +00:00
|
|
|
if isinstance(bias, ColoTensor):
|
|
|
|
bias = bias.torch_tensor()
|
2022-04-21 03:42:37 +00:00
|
|
|
|
|
|
|
# Add communication logic before and after linear call.
|
2022-04-21 06:15:48 +00:00
|
|
|
if isinstance(weight, ColoTensor):
|
2022-04-24 05:43:12 +00:00
|
|
|
if weight.shard_spec == None:
|
|
|
|
return torch.nn.functional.linear(input_tensor, weight.torch_tensor(), bias)
|
|
|
|
elif weight.shard_spec == '1Drow':
|
2022-04-24 06:12:45 +00:00
|
|
|
# Input:S[1] x Weight:S[0] = Output:P
|
|
|
|
# All-Reduce(Output) + bias = res
|
|
|
|
assert divide(input_tensor.shape[-1], gpc.tensor_parallel_size) == weight.size[-1], \
|
|
|
|
'Invalid shapes in 1Drow forward: input={}, weight={}. Expected last dim of input {}.'.format(
|
|
|
|
input_tensor.shape, weight.size, weight.size[-1] * gpc.tensor_parallel_size)
|
2022-04-24 05:43:12 +00:00
|
|
|
# Input:S[1]
|
|
|
|
input_per_partition = split_forward_gather_backward(input_tensor, ParallelMode.PARALLEL_1D, dim=-1)
|
|
|
|
# Output:P
|
2022-04-24 10:30:20 +00:00
|
|
|
device = get_current_device() # TODO where to put to(deivce)?
|
|
|
|
weight_ = weight.torch_tensor().to(device)
|
|
|
|
partial_output = torch.nn.functional.linear(input_per_partition, weight_)
|
2022-04-24 05:43:12 +00:00
|
|
|
# Reduce(Output)
|
|
|
|
output = reduce_input(partial_output, ParallelMode.PARALLEL_1D)
|
|
|
|
# Bias
|
|
|
|
if bias is not None:
|
2022-04-24 10:30:20 +00:00
|
|
|
bias_ = bias.to(device)
|
|
|
|
output = output + bias_
|
2022-04-24 05:43:12 +00:00
|
|
|
return output
|
|
|
|
|
|
|
|
else:
|
|
|
|
raise NotImplementedError
|
2022-04-21 03:42:37 +00:00
|
|
|
else:
|
|
|
|
return torch.nn.functional.linear(input_tensor, weight, bias)
|