import torch from colossalai.tensor.op_wrapper import colo_op_impl from colossalai.tensor.colo_tensor import ColoTensor from colossalai.context import ParallelMode from colossalai.nn.layer.parallel_1d._utils import split_forward_gather_backward, reduce_input from colossalai.nn.layer.utils import divide from colossalai.core import global_context as gpc from packaging import version from colossalai.utils.cuda import get_current_device @colo_op_impl(torch.nn.functional.linear) def colo_linear(types, args, kwargs, pg): """Handles ``__torch_function__`` dispatch for ``torch.nn.functional.linear``. This method computes a linear. """ input_tensor = args[0] weight = args[1] if version.parse(torch.__version__) > version.parse("1.11.0"): if len(args) == 3: bias = args[2] else: bias = None else: bias = kwargs.get('bias', None) if isinstance(bias, ColoTensor): bias = bias.torch_tensor() # Add communication logic before and after linear call. if isinstance(weight, ColoTensor): if weight.shard_spec == None: return torch.nn.functional.linear(input_tensor, weight.torch_tensor(), bias) elif weight.shard_spec == '1Drow': # Input:S[1] x Weight:S[0] = Output:P # All-Reduce(Output) + bias = res assert divide(input_tensor.shape[-1], gpc.tensor_parallel_size) == weight.size[-1], \ 'Invalid shapes in 1Drow forward: input={}, weight={}. Expected last dim of input {}.'.format( input_tensor.shape, weight.size, weight.size[-1] * gpc.tensor_parallel_size) # Input:S[1] input_per_partition = split_forward_gather_backward(input_tensor, ParallelMode.PARALLEL_1D, dim=-1) # Output:P device = get_current_device() # TODO where to put to(deivce)? weight_ = weight.torch_tensor().to(device) partial_output = torch.nn.functional.linear(input_per_partition, weight_) # Reduce(Output) output = reduce_input(partial_output, ParallelMode.PARALLEL_1D) # Bias if bias is not None: bias_ = bias.to(device) output = output + bias_ return output else: raise NotImplementedError else: return torch.nn.functional.linear(input_tensor, weight, bias)