2022-04-24 08:43:44 +00:00
|
|
|
from tests.components_to_test.registry import non_distributed_component_funcs
|
|
|
|
|
|
|
|
import colossalai
|
|
|
|
import pytest
|
2022-04-27 04:00:18 +00:00
|
|
|
import torch
|
2022-04-24 08:43:44 +00:00
|
|
|
import torch.multiprocessing as mp
|
|
|
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use
|
|
|
|
from colossalai.utils.cuda import get_current_device
|
|
|
|
from colossalai.utils import free_port
|
|
|
|
from colossalai.utils import ColoInitContext
|
2022-04-28 07:23:40 +00:00
|
|
|
from colossalai.tensor import named_params_with_colotensor, TensorSpec, ComputePattern, ParallelAction, ColoTensor, ColoOptimizer
|
2022-04-26 10:11:47 +00:00
|
|
|
from colossalai.context import ParallelMode
|
2022-04-27 04:00:18 +00:00
|
|
|
from colossalai.core import global_context as gpc
|
2022-04-24 08:43:44 +00:00
|
|
|
|
|
|
|
from functools import partial
|
2022-04-27 04:00:18 +00:00
|
|
|
import random
|
|
|
|
import os
|
|
|
|
import numpy as np
|
2022-04-24 08:43:44 +00:00
|
|
|
|
2022-05-06 07:03:43 +00:00
|
|
|
# Hack huggingface Bert ModelOutput
|
|
|
|
# Make it available to our ColoTensor
|
|
|
|
from transformers.file_utils import ModelOutput
|
|
|
|
from dataclasses import fields
|
|
|
|
def post_init_colo(self):
|
|
|
|
class_fields = fields(self)
|
|
|
|
# Safety and consistency checks
|
|
|
|
if not len(class_fields):
|
|
|
|
raise ValueError(f"{self.__class__.__name__} has no fields.")
|
|
|
|
if not all(field.default is None for field in class_fields[1:]):
|
|
|
|
raise ValueError(f"{self.__class__.__name__} should not have more than one required field.")
|
|
|
|
|
|
|
|
first_field = getattr(self, class_fields[0].name)
|
|
|
|
other_fields_are_none = all(getattr(self, field.name) is None for field in class_fields[1:])
|
|
|
|
|
|
|
|
def is_tensor_with_colo(x):
|
|
|
|
"""
|
|
|
|
Tests if `x` is a `ColoTensor` or `torch.Tensor`.
|
|
|
|
"""
|
|
|
|
if isinstance(x, torch.Tensor):
|
|
|
|
return True
|
|
|
|
|
|
|
|
return isinstance(x, ColoTensor)
|
|
|
|
|
|
|
|
if other_fields_are_none and not is_tensor_with_colo(first_field):
|
|
|
|
if isinstance(first_field, dict):
|
|
|
|
iterator = first_field.items()
|
|
|
|
first_field_iterator = True
|
|
|
|
else:
|
|
|
|
try:
|
|
|
|
iterator = iter(first_field)
|
|
|
|
first_field_iterator = True
|
|
|
|
except TypeError:
|
|
|
|
first_field_iterator = False
|
|
|
|
|
|
|
|
# if we provided an iterator as first field and the iterator is a (key, value) iterator
|
|
|
|
# set the associated fields
|
|
|
|
if first_field_iterator:
|
|
|
|
for element in iterator:
|
|
|
|
if (
|
|
|
|
not isinstance(element, (list, tuple))
|
|
|
|
or not len(element) == 2
|
|
|
|
or not isinstance(element[0], str)
|
|
|
|
):
|
|
|
|
break
|
|
|
|
setattr(self, element[0], element[1])
|
|
|
|
if element[1] is not None:
|
|
|
|
self[element[0]] = element[1]
|
|
|
|
elif first_field is not None:
|
|
|
|
self[class_fields[0].name] = first_field
|
|
|
|
else:
|
|
|
|
for field in class_fields:
|
|
|
|
v = getattr(self, field.name)
|
|
|
|
if v is not None:
|
|
|
|
self[field.name] = v
|
|
|
|
|
|
|
|
ModelOutput.__post_init__ = post_init_colo
|
|
|
|
# complete the hack
|
2022-04-24 08:43:44 +00:00
|
|
|
|
2022-04-27 04:00:18 +00:00
|
|
|
def set_seed(seed):
|
|
|
|
random.seed(seed)
|
|
|
|
os.environ['PYTHONHASHSEED'] = str(seed)
|
|
|
|
np.random.seed(seed)
|
|
|
|
torch.manual_seed(seed)
|
|
|
|
torch.cuda.manual_seed(seed)
|
|
|
|
torch.backends.cudnn.deterministic = True
|
|
|
|
|
2022-04-28 07:23:40 +00:00
|
|
|
|
2022-04-28 02:55:40 +00:00
|
|
|
def run_1d_col_tp():
|
|
|
|
# A simple net with two stacked nn.Linear
|
|
|
|
get_components_func = non_distributed_component_funcs.get_callable('simple_net')
|
|
|
|
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
|
|
|
rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
|
|
|
|
|
|
|
|
set_seed(1)
|
|
|
|
with ColoInitContext(device=get_current_device()):
|
|
|
|
model = model_builder(checkpoint=True)
|
|
|
|
|
|
|
|
parallel_action_list_row = [
|
2022-05-06 04:57:14 +00:00
|
|
|
ParallelAction(priority=1,
|
|
|
|
compute_pattern=ComputePattern.TP1DRow_Linear,
|
|
|
|
parallel_mode=ParallelMode.PARALLEL_1D)
|
2022-04-28 02:55:40 +00:00
|
|
|
]
|
|
|
|
spec_row = TensorSpec(parallel_action_list_row)
|
|
|
|
|
|
|
|
parallel_action_list_col = [
|
2022-05-06 04:57:14 +00:00
|
|
|
ParallelAction(priority=1,
|
|
|
|
compute_pattern=ComputePattern.TP1DCol_Linear,
|
|
|
|
parallel_mode=ParallelMode.PARALLEL_1D)
|
2022-04-28 02:55:40 +00:00
|
|
|
]
|
|
|
|
spec_col = TensorSpec(parallel_action_list_col)
|
|
|
|
|
2022-04-29 06:10:05 +00:00
|
|
|
parallel_action_list_embedding_col = [
|
2022-05-06 04:57:14 +00:00
|
|
|
ParallelAction(priority=1,
|
|
|
|
compute_pattern=ComputePattern.TP1DCol_Embedding,
|
|
|
|
parallel_mode=ParallelMode.PARALLEL_1D)
|
2022-04-29 06:10:05 +00:00
|
|
|
]
|
|
|
|
spec_embedding_col = TensorSpec(parallel_action_list_embedding_col)
|
|
|
|
|
2022-04-28 02:55:40 +00:00
|
|
|
set_seed(1)
|
|
|
|
if rank == 0:
|
|
|
|
model_torch = model_builder(checkpoint=True)
|
|
|
|
model_torch = model_torch.cuda()
|
|
|
|
|
|
|
|
# A naive way to set spec for all weights in Linear
|
2022-05-06 07:03:43 +00:00
|
|
|
for name, p in model.colo_named_parameters():
|
2022-04-28 02:55:40 +00:00
|
|
|
if not isinstance(p, ColoTensor):
|
|
|
|
continue
|
|
|
|
if 'proj1' in name and ('weight' in name or 'bias' in name):
|
|
|
|
p.set_spec(spec_col)
|
|
|
|
if 'proj2' in name and 'weight' in name:
|
|
|
|
p.set_spec(spec_row)
|
2022-04-29 06:10:05 +00:00
|
|
|
if 'embed' in name and 'weight' in name:
|
|
|
|
p.set_spec(spec_embedding_col)
|
2022-04-28 02:55:40 +00:00
|
|
|
|
|
|
|
model = model.cuda()
|
|
|
|
|
|
|
|
for i, (data, label) in enumerate(train_dataloader):
|
|
|
|
data = data.to(get_current_device())
|
|
|
|
label = label.to(get_current_device())
|
|
|
|
|
|
|
|
torch.distributed.broadcast(data, 0, group=gpc.get_group(ParallelMode.PARALLEL_1D))
|
|
|
|
torch.distributed.broadcast(label, 0, group=gpc.get_group(ParallelMode.PARALLEL_1D))
|
|
|
|
|
|
|
|
# Bcast rank0 data to all processes
|
|
|
|
if criterion:
|
|
|
|
output = model(data)
|
|
|
|
loss = criterion(output, label)
|
|
|
|
else:
|
|
|
|
output = model(data, label)
|
|
|
|
loss = output
|
|
|
|
|
|
|
|
# For reference
|
|
|
|
if rank == 0:
|
|
|
|
if criterion:
|
|
|
|
output_torch = model_torch(data)
|
|
|
|
loss_torch = criterion(output_torch, label)
|
|
|
|
else:
|
|
|
|
output_torch = model_torch(data, label)
|
|
|
|
loss_torch = output_torch
|
|
|
|
|
|
|
|
if rank == 0:
|
|
|
|
# print(loss.torch_tensor().item())
|
|
|
|
# print('loss torch', loss_torch.item())
|
|
|
|
assert torch.allclose(loss.torch_tensor(), loss_torch, rtol=1e-2)
|
|
|
|
|
|
|
|
loss.backward()
|
|
|
|
|
|
|
|
if rank == 0:
|
|
|
|
loss_torch.backward()
|
|
|
|
if i > 5:
|
|
|
|
break
|
2022-04-27 04:00:18 +00:00
|
|
|
|
2022-04-28 07:23:40 +00:00
|
|
|
|
2022-04-28 02:57:14 +00:00
|
|
|
# Test the overrided parameters() and named_parameters() member functions
|
|
|
|
def test_model_parameters():
|
|
|
|
# build a module with 2 Linear, 4 parameters in total.
|
|
|
|
class Net(torch.nn.Module):
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
self.fcs = torch.nn.Sequential(torch.nn.Linear(2, 3), torch.nn.Linear(3, 2))
|
|
|
|
self.extra_param = torch.nn.Parameter(torch.randn(2))
|
|
|
|
|
|
|
|
with ColoInitContext(device=get_current_device()):
|
|
|
|
model = Net()
|
|
|
|
|
|
|
|
param_cnt = 0
|
|
|
|
for name, p in model.named_parameters():
|
|
|
|
param_cnt += 1
|
|
|
|
assert param_cnt == 5
|
|
|
|
|
2022-05-06 04:57:14 +00:00
|
|
|
for name, colo_p in model.colo_named_parameters():
|
|
|
|
assert colo_p.is_model_data()
|
|
|
|
|
2022-04-28 02:57:14 +00:00
|
|
|
param_cnt = 0
|
|
|
|
for name, p in model.named_parameters(recurse=False):
|
|
|
|
param_cnt += 1
|
|
|
|
assert param_cnt == 1
|
|
|
|
|
|
|
|
param_cnt = 0
|
|
|
|
for p in model.fcs[0].parameters(recurse=False):
|
|
|
|
param_cnt += 1
|
|
|
|
assert param_cnt == 2
|
|
|
|
|
|
|
|
|
2022-04-28 07:23:40 +00:00
|
|
|
def test_colo_optimizer():
|
|
|
|
get_components_func = non_distributed_component_funcs.get_callable('simple_net')
|
|
|
|
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
|
|
|
set_seed(1)
|
|
|
|
with ColoInitContext(lazy_memory_allocate=False, device=get_current_device()):
|
|
|
|
model = model_builder(checkpoint=True)
|
|
|
|
|
|
|
|
colo_optimizer = ColoOptimizer(dict(model.named_parameters()), torch.optim.SGD, lr=0.1)
|
|
|
|
for i, (data, label) in enumerate(train_dataloader):
|
|
|
|
colo_optimizer.zero_grad()
|
|
|
|
data = data.to(get_current_device())
|
|
|
|
label = label.to(get_current_device())
|
|
|
|
|
|
|
|
# Bcast rank0 data to all processes
|
|
|
|
if criterion:
|
|
|
|
output = model(data)
|
|
|
|
loss = criterion(output, label)
|
|
|
|
else:
|
|
|
|
output = model(data, label)
|
|
|
|
loss = output
|
|
|
|
|
|
|
|
loss.backward()
|
|
|
|
colo_optimizer.step()
|
|
|
|
|
|
|
|
if i > 5:
|
|
|
|
break
|
|
|
|
|
|
|
|
|
2022-04-27 04:00:18 +00:00
|
|
|
def run_1d_row_tp():
|
2022-04-24 08:43:44 +00:00
|
|
|
# A simple net with two stacked nn.Linear
|
|
|
|
get_components_func = non_distributed_component_funcs.get_callable('simple_net')
|
|
|
|
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
2022-04-27 04:00:18 +00:00
|
|
|
rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
|
2022-04-25 08:01:52 +00:00
|
|
|
|
2022-04-27 04:00:18 +00:00
|
|
|
set_seed(1)
|
2022-04-25 08:01:52 +00:00
|
|
|
with ColoInitContext(device=get_current_device()):
|
2022-04-24 08:43:44 +00:00
|
|
|
model = model_builder(checkpoint=True)
|
|
|
|
|
2022-04-26 10:11:47 +00:00
|
|
|
parallel_action_list = [
|
2022-05-06 04:57:14 +00:00
|
|
|
ParallelAction(priority=1,
|
|
|
|
compute_pattern=ComputePattern.TP1DRow_Linear,
|
|
|
|
parallel_mode=ParallelMode.PARALLEL_1D)
|
2022-04-26 10:11:47 +00:00
|
|
|
]
|
|
|
|
spec = TensorSpec(parallel_action_list)
|
|
|
|
|
2022-04-29 06:10:05 +00:00
|
|
|
parallel_action_list_embedding_row = [
|
2022-05-06 04:57:14 +00:00
|
|
|
ParallelAction(priority=1,
|
|
|
|
compute_pattern=ComputePattern.TP1DRow_Embedding,
|
|
|
|
parallel_mode=ParallelMode.PARALLEL_1D)
|
2022-04-29 06:10:05 +00:00
|
|
|
]
|
|
|
|
spec_embedding_row = TensorSpec(parallel_action_list_embedding_row)
|
|
|
|
|
2022-04-27 04:00:18 +00:00
|
|
|
set_seed(1)
|
|
|
|
if rank == 0:
|
|
|
|
model_torch = model_builder(checkpoint=True)
|
|
|
|
model_torch = model_torch.cuda()
|
|
|
|
|
2022-04-26 10:11:47 +00:00
|
|
|
# A naive way to set spec for all weights in Linear
|
2022-04-27 07:28:59 +00:00
|
|
|
for name, p in model.colo_named_parameters():
|
2022-04-26 10:11:47 +00:00
|
|
|
if not isinstance(p, ColoTensor):
|
|
|
|
continue
|
|
|
|
if 'weight' in name and 'LayerNorm' not in name and 'ln' not in name and 'embed' not in name:
|
|
|
|
p.set_spec(spec)
|
2022-04-29 06:10:05 +00:00
|
|
|
if 'embed' in name and 'weight' in name:
|
|
|
|
p.set_spec(spec_embedding_row)
|
2022-04-26 10:11:47 +00:00
|
|
|
|
2022-04-27 04:00:18 +00:00
|
|
|
model = model.cuda()
|
2022-04-24 08:43:44 +00:00
|
|
|
|
|
|
|
for i, (data, label) in enumerate(train_dataloader):
|
2022-04-26 10:11:47 +00:00
|
|
|
data = data.to(get_current_device())
|
|
|
|
label = label.to(get_current_device())
|
2022-04-25 08:01:52 +00:00
|
|
|
|
2022-04-27 04:00:18 +00:00
|
|
|
torch.distributed.broadcast(data, 0, group=gpc.get_group(ParallelMode.PARALLEL_1D))
|
|
|
|
torch.distributed.broadcast(label, 0, group=gpc.get_group(ParallelMode.PARALLEL_1D))
|
|
|
|
|
|
|
|
# Bcast rank0 data to all processes
|
2022-04-24 08:43:44 +00:00
|
|
|
if criterion:
|
2022-04-26 10:11:47 +00:00
|
|
|
output = model(data)
|
2022-04-24 08:43:44 +00:00
|
|
|
loss = criterion(output, label)
|
|
|
|
else:
|
2022-04-26 10:11:47 +00:00
|
|
|
output = model(data, label)
|
2022-04-24 08:43:44 +00:00
|
|
|
loss = output
|
|
|
|
|
2022-04-27 04:00:18 +00:00
|
|
|
# For reference
|
|
|
|
if rank == 0:
|
|
|
|
if criterion:
|
|
|
|
output_torch = model_torch(data)
|
|
|
|
loss_torch = criterion(output_torch, label)
|
|
|
|
else:
|
|
|
|
output_torch = model_torch(data, label)
|
|
|
|
loss_torch = output_torch
|
|
|
|
|
|
|
|
if rank == 0:
|
|
|
|
# print(loss.torch_tensor().item())
|
|
|
|
# print('loss torch', loss_torch.item())
|
|
|
|
assert torch.allclose(loss.torch_tensor(), loss_torch, rtol=1e-2)
|
|
|
|
|
2022-04-24 08:43:44 +00:00
|
|
|
loss.backward()
|
|
|
|
|
2022-04-27 04:00:18 +00:00
|
|
|
if rank == 0:
|
|
|
|
loss_torch.backward()
|
2022-04-24 08:43:44 +00:00
|
|
|
if i > 5:
|
|
|
|
break
|
|
|
|
|
2022-05-06 07:03:43 +00:00
|
|
|
def run_bert_1d():
|
|
|
|
get_components_func = non_distributed_component_funcs.get_callable('bert')
|
|
|
|
model_builder, train_dataloader, _, optimizer_class, criterion = get_components_func()
|
|
|
|
device = get_current_device()
|
|
|
|
|
|
|
|
set_seed(1)
|
|
|
|
with ColoInitContext(device=device):
|
|
|
|
model = model_builder(checkpoint=True)
|
|
|
|
|
|
|
|
# parallel_action_list_row = [
|
|
|
|
# ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DRow_Linear, parallel_mode=ParallelMode.PARALLEL_1D)
|
|
|
|
# ]
|
|
|
|
# spec_row = TensorSpec(parallel_action_list_row)
|
|
|
|
|
|
|
|
parallel_action_list_col = [
|
|
|
|
ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DCol_Linear, parallel_mode=ParallelMode.PARALLEL_1D)
|
|
|
|
]
|
|
|
|
spec_col = TensorSpec(parallel_action_list_col)
|
|
|
|
|
|
|
|
parallel_action_list_embedding_col = [
|
|
|
|
ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DCol_Embedding, parallel_mode=ParallelMode.PARALLEL_1D)
|
|
|
|
]
|
|
|
|
spec_embedding_col = TensorSpec(parallel_action_list_embedding_col)
|
|
|
|
|
|
|
|
for name, p in model.colo_named_parameters():
|
|
|
|
if not isinstance(p, ColoTensor):
|
|
|
|
continue
|
|
|
|
#print(name)
|
|
|
|
if 'classifier' in name and ('weight' in name or 'bias' in name):
|
|
|
|
p.set_spec(spec_col)
|
|
|
|
if '_embeddings' in name and 'weight' in name:
|
|
|
|
p.set_spec(spec_embedding_col)
|
|
|
|
# for name, p in model.colo_named_parameters():
|
|
|
|
# if not isinstance(p, ColoTensor):
|
|
|
|
# continue
|
|
|
|
# print(f"{name}: is_gathered {p.is_gathered()}")
|
|
|
|
|
|
|
|
model = model.cuda()
|
|
|
|
|
|
|
|
for i, (data, label) in enumerate(train_dataloader):
|
|
|
|
if i > 5:
|
|
|
|
break
|
|
|
|
data = data.to(device)
|
|
|
|
label = label.to(device)
|
|
|
|
|
|
|
|
model.train()
|
|
|
|
if criterion:
|
|
|
|
output = model(data)
|
|
|
|
loss = criterion(output, label)
|
|
|
|
else:
|
|
|
|
output = model(data, label)
|
|
|
|
loss = output
|
|
|
|
|
|
|
|
loss.backward()
|
2022-04-24 08:43:44 +00:00
|
|
|
|
|
|
|
def run_dist(rank, world_size, port):
|
|
|
|
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
|
|
|
|
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
2022-04-27 04:00:18 +00:00
|
|
|
run_1d_row_tp()
|
2022-04-29 06:10:05 +00:00
|
|
|
run_1d_col_tp()
|
2022-04-24 08:43:44 +00:00
|
|
|
|
2022-05-06 07:03:43 +00:00
|
|
|
def run_dist_bert(rank, world_size, port):
|
|
|
|
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
|
|
|
|
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
|
|
run_bert_1d()
|
2022-05-06 04:57:14 +00:00
|
|
|
|
2022-04-24 08:43:44 +00:00
|
|
|
@pytest.mark.dist
|
2022-05-06 07:03:43 +00:00
|
|
|
@pytest.mark.parametrize('world_size', [1, 4])
|
2022-04-24 08:43:44 +00:00
|
|
|
@rerun_if_address_is_in_use()
|
|
|
|
def test_simple_net(world_size):
|
|
|
|
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
|
|
|
mp.spawn(run_func, nprocs=world_size)
|
|
|
|
|
2022-05-06 07:03:43 +00:00
|
|
|
@pytest.mark.dist
|
|
|
|
#@pytest.mark.parametrize('world_size', [1, 4])
|
|
|
|
#Don't really add it to pytest now. After finishing Classifier and Loss, I(jzy) will remove this annotation.
|
|
|
|
@parameterize('world_size', [1])
|
|
|
|
@rerun_if_address_is_in_use()
|
|
|
|
def test_bert(world_size):
|
|
|
|
run_func = partial(run_dist_bert, world_size=world_size, port=free_port())
|
|
|
|
mp.spawn(run_func, nprocs=world_size)
|
|
|
|
|
2022-04-24 08:43:44 +00:00
|
|
|
|
|
|
|
if __name__ == '__main__':
|
2022-05-06 04:57:14 +00:00
|
|
|
# test_simple_net()
|
2022-05-06 07:03:43 +00:00
|
|
|
# test_model_parameters()
|
2022-04-29 06:10:05 +00:00
|
|
|
# test_colo_optimizer()
|
2022-05-06 07:03:43 +00:00
|
|
|
test_bert()
|