Browse Source

[Tensor] make a simple net works with 1D row TP (#879)

pull/880/head
Jiarui Fang 3 years ago committed by GitHub
parent
commit
7f76517a85
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 16
      colossalai/tensor/colo_tensor.py
  2. 25
      tests/test_tensor/test_net_tp.py

16
colossalai/tensor/colo_tensor.py

@ -157,5 +157,21 @@ class ColoTensor(object):
def backward(self, gradient: Optional[torch.Tensor] = None, retain_graph: bool = False):
self._torch_tensor.backward(gradient=gradient, retain_graph=retain_graph)
## TODO(fjr) we reduce redundency of the following code
def __add__(self, o) -> "ColoTensor":
return ColoTensor.init_from_torch_tensor(self.torch_tensor() + o.torch_tensor())
def __truediv__(self, o) -> "ColoTensor":
return ColoTensor.init_from_torch_tensor(self.torch_tensor() / o)
def view(self, *args: int) -> "ColoTensor":
return ColoTensor.init_from_torch_tensor(self.torch_tensor().view(*args))
def permute(self, *args) -> "ColoTensor":
return ColoTensor.init_from_torch_tensor(self.torch_tensor().permute(*args))
def transpose(self, *args) -> "ColoTensor":
return ColoTensor.init_from_torch_tensor(self.torch_tensor().transpose(*args))
def contiguous(self):
return ColoTensor.init_from_torch_tensor(self.torch_tensor().contiguous())

25
tests/test_tensor/test_net_tp.py

@ -7,7 +7,8 @@ from colossalai.testing import parameterize, rerun_if_address_is_in_use
from colossalai.utils.cuda import get_current_device
from colossalai.utils import free_port
from colossalai.utils import ColoInitContext
from colossalai.tensor import named_params_with_colotensor
from colossalai.tensor import named_params_with_colotensor, TensorSpec, ComputePattern, ParallelAction, ColoTensor
from colossalai.context import ParallelMode
from functools import partial
@ -20,18 +21,32 @@ def run_simple_net():
with ColoInitContext(device=get_current_device()):
model = model_builder(checkpoint=True)
parallel_action_list = [
ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DRow, parallel_mode=ParallelMode.PARALLEL_1D)
]
spec = TensorSpec(parallel_action_list)
# A naive way to set spec for all weights in Linear
for name, p in named_params_with_colotensor(model):
if not isinstance(p, ColoTensor):
continue
if 'weight' in name and 'LayerNorm' not in name and 'ln' not in name and 'embed' not in name:
p.set_spec(spec)
model.cuda()
for param in named_params_with_colotensor(model):
print(param)
# we set the Specs for weight of each linear.
# model.proj1.weight.set_spec('1Drow')
# model.proj2.weight.set_spec('1Drow')
for i, (data, label) in enumerate(train_dataloader):
output = model(data)
data = data.to(get_current_device())
label = label.to(get_current_device())
if criterion:
output = model(data)
loss = criterion(output, label)
else:
output = model(data, label)
loss = output
print(loss.torch_tensor())

Loading…
Cancel
Save